Artykuły w czasopismach na temat „Thermal Stability of Moo2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermal Stability of Moo2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Pu, Enqiang, Debin Liu, Pinyun Ren, et al. "Ultrathin MoO2 nanosheets with good thermal stability and high conductivity." AIP Advances 7, no. 2 (2017): 025015. http://dx.doi.org/10.1063/1.4977543.
Pełny tekst źródłaLee, Woongkyu, Cheol Jin Cho, Woo Chul Lee, Cheol Seong Hwang, Robert P. H. Chang, and Seong Keun Kim. "MoO2 as a thermally stable oxide electrode for dynamic random-access memory capacitors." Journal of Materials Chemistry C 6, no. 48 (2018): 13250–56. http://dx.doi.org/10.1039/c8tc04167a.
Pełny tekst źródłaMandarić, Mirna, Biserka Prugovečki, Ivana Kekez, et al. "Counter Anion Effects on the Formation and Structural Transformations of Mo(vi)-Hydrazone Coordination Assemblies: Salts, Solvates, Co-Crystals, and Neutral Complexes." Crystals 12, no. 4 (2022): 443. http://dx.doi.org/10.3390/cryst12040443.
Pełny tekst źródłaQing, Yubin, Kaijun Yang, Yaofeng Chen, et al. "Thermal Stability, Optical and Electrical Properties of Substoichiometric Molybdenum Oxide." Materials 16, no. 7 (2023): 2841. http://dx.doi.org/10.3390/ma16072841.
Pełny tekst źródłaCheng, Ao, Yan Shen, Tao Cui, et al. "One-Step Synthesis of Heterostructured Mo@MoO2 Nanosheets for High-Performance Supercapacitors with Long Cycling Life and High Rate Capability." Nanomaterials 14, no. 17 (2024): 1404. http://dx.doi.org/10.3390/nano14171404.
Pełny tekst źródłaIsmagilov, Z. R., E. V. Matus, O. S. Efimova, et al. "The Development of Metal-Carbon Catalysts for Oxidative Desulfurization of Diesel Fractions." Eurasian Chemico-Technological Journal 22, no. 2 (2020): 81. http://dx.doi.org/10.18321/ectj954.
Pełny tekst źródłaBeirakhov, A. G., E. G. Il’in, A. V. Rotov, et al. "Thermal stability and products of decomposition of molybdenum(IV) complex with isopropylhydroxylamine [MoO2(i-C3H7NHO)2]." Russian Journal of Inorganic Chemistry 61, no. 6 (2016): 750–54. http://dx.doi.org/10.1134/s0036023616060036.
Pełny tekst źródłaBansod, Ashish, Ravindra Bhaskar, Chandarshekhar Ladole, Nilesh Salunkhe, Kanchan Thakare, and Anand Aswar. "Mononuclear pyrazine-2-carbohydrazone metal complexes: Synthesis, structural assessment, thermal, biological, and electrical conductivity studies." European Journal of Chemistry 13, no. 1 (2022): 126–34. http://dx.doi.org/10.5155/eurjchem.13.1.126-134.2186.
Pełny tekst źródłaMatus, Е. V., S. A. Yashnik, A. V. Salnikov, et al. "Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel." Eurasian Chemico-Technological Journal 23, no. 4 (2021): 267. http://dx.doi.org/10.18321/ectj1130.
Pełny tekst źródłaMuñoz-Flores, Paula, Po S. Poon, Catherine Sepulveda, Conchi O. Ania, and Juan Matos. "Photocatalytic Performance of Carbon-Containing CuMo-Based Catalysts under Sunlight Illumination." Catalysts 12, no. 1 (2022): 46. http://dx.doi.org/10.3390/catal12010046.
Pełny tekst źródłaFilipek, E., I. Rychlowska-Himmel, and A. Paczesna. "Thermal stability of In2(MoO4)3 and phase equilibria in the MoO3–In2O3 system." Journal of Thermal Analysis and Calorimetry 109, no. 2 (2012): 711–16. http://dx.doi.org/10.1007/s10973-012-2224-7.
Pełny tekst źródłaIvanov, K., P. Litcheva, P. Klissurski, and T. Popov. "Thermal stability of MnMoO4-MoO3 catalysts for methanol oxidation." Journal of Thermal Analysis 36, no. 4 (1990): 1361–68. http://dx.doi.org/10.1007/bf01914059.
Pełny tekst źródłaTopić, Edi, Vladimir Damjanović, Katarina Pičuljan, and Mirta Rubčić. "Dinuclear Molybdenum(VI) Complexes Based on Flexible Succinyl and Adipoyl Dihydrazones." Crystals 14, no. 2 (2024): 135. http://dx.doi.org/10.3390/cryst14020135.
Pełny tekst źródłaRAJINI, P. SUJA PREMA, R. MURUGESAN, and S. PERUMAL. "ROLE OF MOLYBDENUM TRIOXIDE ON THERMAL STABILITY OF POLYANILINE NANOCOMPOSITE." International Journal of Nanoscience 11, no. 03 (2012): 1250025. http://dx.doi.org/10.1142/s0219581x12500251.
Pełny tekst źródłaMa, Ke, Jiajia Yin, Quansheng Zhang, and Jingying Xie. "Thermal stability and photoluminescence property of hexagonal MoO3·0.55H2O microrods." Phase Transitions 90, no. 4 (2016): 342–50. http://dx.doi.org/10.1080/01411594.2016.1199804.
Pełny tekst źródłaYu, Xiaochen, Yinlin Jiang, Xiaojie Li, et al. "Preparation and investigation of Dy3+/Tm3+-doped NaGd(MoO4)2 with thermal stability and tunable white light emission for LED applications." CrystEngComm 24, no. 4 (2022): 805–17. http://dx.doi.org/10.1039/d1ce01434j.
Pełny tekst źródłaQin, Xingxing, Xuelai Yu, Zerui Li, et al. "Thermal-Induced Performance Decay of the State-of-the-Art Polymer: Non-Fullerene Solar Cells and the Method of Suppression." Molecules 28, no. 19 (2023): 6856. http://dx.doi.org/10.3390/molecules28196856.
Pełny tekst źródłaZhao, Tianyang, Shiqi Zhang, and Dachuan Zhu. "A Novel Zero-Thermal-Quenching Red Phosphor with High Quantum Efficiency and Color Purity." Inorganics 11, no. 10 (2023): 406. http://dx.doi.org/10.3390/inorganics11100406.
Pełny tekst źródłade Amorim Pryston, Dhara Beatriz, Thatiane Veríssimo dos Santos Martins, Jailton Alves de Vasconcelos Júnior, Débora Olimpio da Silva Avelino, Mario Roberto Meneghetti, and Simoni Margareti Plentz Meneghetti. "Investigation of CeO2, MoO3, and Ce2(MoO4)3, Synthesized by the Pechini Method, as Catalysts for Fructose Conversion." Catalysts 13, no. 1 (2022): 4. http://dx.doi.org/10.3390/catal13010004.
Pełny tekst źródłaTomaszewicz, Elżbieta, Grażyna Dąbrowska, Hubert Fuks, and Paweł Kochmański. "Nd3+-Doped Scheelite-Type Multifunctional Materials—Their Thermal Stability and Magnetic Properties." Materials 17, no. 19 (2024): 4883. http://dx.doi.org/10.3390/ma17194883.
Pełny tekst źródłaGuo, Xiaogang, Taotao Liang, Binfang Yuan, and Jing Wang. "Nano-Al doped-MoO3 high-energy composite films with excellent hydrophobicity and thermal stability." Ceramics International 47, no. 17 (2021): 24039–46. http://dx.doi.org/10.1016/j.ceramint.2021.05.113.
Pełny tekst źródłaGao, Yan, Tao Luan, Tao Lv, and Hong Ming Xu. "The Mo Loading Effect on Thermo Stability and SO2 Oxidation of SCR Catalyst." Advanced Materials Research 573-574 (October 2012): 58–62. http://dx.doi.org/10.4028/www.scientific.net/amr.573-574.58.
Pełny tekst źródłaShen, Yu-Min, Cheng-Hsun Ho, Zhen Chong, Chih-Lung Yang, Chia-Chin Chang, and Jow-Lay Huang. "Development of in Operando Technique for Modification TiO2 Based Li-Ion Anode Materials Application." ECS Meeting Abstracts MA2024-02, no. 4 (2024): 499. https://doi.org/10.1149/ma2024-024499mtgabs.
Pełny tekst źródłaQiao, Xuebin, and Yong Ye. "Complete solid–solution AgYb1−xEux(MoO4)2: Preparation, efficient red-luminescence, and high thermal stability." Materials Letters 161 (December 2015): 301–4. http://dx.doi.org/10.1016/j.matlet.2015.08.130.
Pełny tekst źródłaChouard, Nolwenn, Daniel Caurant, Odile Majérus, et al. "Thermal stability of SiO2–B2O3–Al2O3–Na2O–CaO glasses with high Nd2O3 and MoO3 concentrations." Journal of Alloys and Compounds 671 (June 2016): 84–99. http://dx.doi.org/10.1016/j.jallcom.2016.02.063.
Pełny tekst źródłaSilva, Adriano Lima da, Helder de Lucena Pereira, Herbet Bezerra Sales, et al. "Optimization of Biodiesel Production Process Using MoO3 Catalysts and Residual Oil: A Comprehensive Experimental 23 Study." Molecules 29, no. 10 (2024): 2404. http://dx.doi.org/10.3390/molecules29102404.
Pełny tekst źródłaCastañeda-Calzoncit, Cesar E., Denis A. Cabrera-Munguia, Jesús A. Claudio-Rizo, Dora A. Solís-Casados, and Claudia M. López-Badillo. "Biocompatible Molybdenum Complexes Based on Terephthalic Acid and Derived from PET: Synthesis and Characterization." Asian Journal of Applied Science and Technology 06, no. 03 (2022): 25–34. http://dx.doi.org/10.38177/ajast.2022.6304.
Pełny tekst źródłaAly, K. A., A. Dahshan, and Yasser B. Saddeek. "Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses." Journal of Thermal Analysis and Calorimetry 100, no. 2 (2009): 543–49. http://dx.doi.org/10.1007/s10973-009-0018-3.
Pełny tekst źródłaImgharn, Abdelaziz, Tingwei Sun, Jimmy Nicolle, et al. "A Simple Approach to Prepare a C3N4/MoO3 Heterojunction with Improved Photocatalytic Performance for the Degradation of Methylparaben." Catalysts 14, no. 3 (2024): 170. http://dx.doi.org/10.3390/catal14030170.
Pełny tekst źródłaGuo, Zhenbin, Zhan-Chao Wu, Bojana Milićević, et al. "Na2Tb0.5(MoO4)(PO4):0.5Eu3+: A red-emitting phosphor with both high thermal stability and high colour purity." Optical Materials 97 (November 2019): 109376. http://dx.doi.org/10.1016/j.optmat.2019.109376.
Pełny tekst źródłaSouza, A. G., I. P. Silva Filho, J. C. O. Santos, et al. "Thermal stability of compounds formed by the adsorption of copper(II) ion on MoO3 modified with amines." Journal of Thermal Analysis and Calorimetry 79, no. 2 (2005): 473–78. http://dx.doi.org/10.1007/s10973-005-0087-x.
Pełny tekst źródłaGuo, Zhenbin, Bojana Milićević, Jiajun Feng, et al. "Improved thermal stability of luminescence by anion modification in Na2Y(MoO4)(PO4):Tb3+,Eu3+ red-emitting phosphors." Journal of Alloys and Compounds 837 (October 2020): 155438. http://dx.doi.org/10.1016/j.jallcom.2020.155438.
Pełny tekst źródłaWang, Min, Changhao Wang, Jian Wang, et al. "Temperature-Dependent Raman Spectroscopic Study of the Double Molybdate KBi(MoO4)2." Materials 13, no. 23 (2020): 5453. http://dx.doi.org/10.3390/ma13235453.
Pełny tekst źródłaMA, Frechero, Cardillo E, Molina MC, Sola ME, Terny S, and Di Pratula P. "Effect of small mobile cations on molybdenumborate glasses." Material Science & Engineering International Journal 2, no. 6 (2018): 199–204. http://dx.doi.org/10.15406/mseij.2018.02.00057.
Pełny tekst źródłaHan, Zhongxu, Shuchen Lü, Qingyu Meng, Mengsi Sun, and Yandong Ren. "Enhanced red emission and thermal stability of Ca(MoO4)0.8(WO4)0.2:xDy3+, yEu3+ phosphors by charge compensation." Journal of Luminescence 241 (January 2022): 118504. http://dx.doi.org/10.1016/j.jlumin.2021.118504.
Pełny tekst źródłaChen, Huan, Shenghao Ai, Chengli Dong, et al. "Eu3+-induced multicolor luminescence properties and enhanced thermal stability in the novel phosphors of Li0.1Na0.9Gd0.5Tb0.5-xEux(MoO4)2." Journal of Luminescence 222 (June 2020): 117116. http://dx.doi.org/10.1016/j.jlumin.2020.117116.
Pełny tekst źródłaMuftah, Amal A., Ramejabi Sayyad, Shobha Waghmode, Supriya Shukla, and Sharda Gadale. "Synthesis, Characterization of Zirconia and Molybdenum Doped on Silica: Study their Catalytic Activity for Oxidation of Sulphides." Asian Journal of Chemistry 35, no. 4 (2023): 999–1008. http://dx.doi.org/10.14233/ajchem.2023.27586.
Pełny tekst źródłaCosta, Heryka R. A., André O. Santos, Yago N. Teixeira, et al. "Exploring the Thermal-Oxidative Stability of Azithromycin Using a Thermoactivated Sensor Based on Cerium Molybdate and Multi-Walled Carbon Nanotubes." Nanomaterials 14, no. 11 (2024): 899. http://dx.doi.org/10.3390/nano14110899.
Pełny tekst źródłaCha, Hou-Chin, Chia-Feng Li, Tsui-Yun Chung, Wei-Yang Ma, Cheng-Si Tsao, and Yu-Ching Huang. "Spray-Coated MoO3 Hole Transport Layer for Inverted Organic Photovoltaics." Polymers 16, no. 7 (2024): 981. http://dx.doi.org/10.3390/polym16070981.
Pełny tekst źródłaParaguay-Delgado, F., Y. Verde, E. Cizniega, J. A. Lumbreras, and G. Alonso-Nuñez. "Synthesis and Characterization of Porous Mo-W Oxide Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 12 (2008): 6445–50. http://dx.doi.org/10.1166/jnn.2008.18404.
Pełny tekst źródłaPiątkowska, Magdalena, and Elżbieta Tomaszewicz. "Synthesis, structure, and thermal stability of new scheelite-type Pb1−3x□xPr2x(MoO4)1−3x(WO4)3x ceramic materials." Journal of Thermal Analysis and Calorimetry 126, no. 1 (2016): 111–19. http://dx.doi.org/10.1007/s10973-016-5499-2.
Pełny tekst źródłaHu, Yatao, and Peter K. Davies. "Synthesis, Thermal Stability, and Structure of (V.13Mo.87)O2.935: A New Oxide with the Open "Hexagonal MoO3" Structure." Journal of Solid State Chemistry 105, no. 2 (1993): 489–503. http://dx.doi.org/10.1006/jssc.1993.1241.
Pełny tekst źródłaYang, Ruiqi, Ju Li, Xinjing Xie, et al. "Spectroscopic investigation of K5La(MoO4)4:Sm3+ red phosphor with excellent thermal stability and color purity for white LEDs." Journal of Luminescence 267 (March 2024): 120366. http://dx.doi.org/10.1016/j.jlumin.2023.120366.
Pełny tekst źródłaTavares, Maria Inês Bruno, José Carlos Dutra Filho, Tais Nascimento, Gisele Cristina Valle Iulianelli, and Pedro Paulo Merat. "Effect of Molybdenum Trioxide in the Behavior of Poly(vinyl alcohol) Nanocomposites Systems Focusing New Systems for Protection against COVID-19." Journal of Research Updates in Polymer Science 9 (December 30, 2020): 89–95. http://dx.doi.org/10.6000/1929-5995.2020.09.09.
Pełny tekst źródłaQiu, Xiao-Li, Xiang-Hu Gao, Cheng-Yu He, and Gang Liu. "A novel solar absorber coating based on Mo-MoO3 nanocrystalline embedded into amorphous TiC: Microstructure, thermal stability and failure analysis." Infrared Physics & Technology 109 (September 2020): 103407. http://dx.doi.org/10.1016/j.infrared.2020.103407.
Pełny tekst źródłaSong, Young Ho, Joon Sik Park, Jeong Min Kim, and Seong Hoon Yi. "Oxidation Behaviors of Pure Ti Thermal Plasma Spray Coated Mo-Si-B Alloys." Materials Science Forum 695 (July 2011): 365–68. http://dx.doi.org/10.4028/www.scientific.net/msf.695.365.
Pełny tekst źródłaGeng, Lei, and Yunjian Wang. "Synthesis and Characterization of Ammonium Potassium Tellurium Polyoxomolybdate: (NH4)2K2TeMo6O22·2H2O with One-Dimensional Anionic Polymeric Chain [TeMo6O22]4−." Crystals 11, no. 4 (2021): 375. http://dx.doi.org/10.3390/cryst11040375.
Pełny tekst źródłaWang, Hui, Houlin Wu, Guangling Bian, and Ling Song. "An Anthracene-Based Bis-Stilbene Derivative as Luminescent Materials for Organic Light Emitting Diodes." Materials 16, no. 10 (2023): 3685. http://dx.doi.org/10.3390/ma16103685.
Pełny tekst źródłaWang, Fu, Yuanlin Wang, Daiyu Zhang, et al. "Effects of MoO3 and Nd2O3 on the structural features, thermal stability and properties of iron-boron-phosphate based glasses and composites." Journal of Nuclear Materials 560 (March 2022): 153500. http://dx.doi.org/10.1016/j.jnucmat.2021.153500.
Pełny tekst źródłaHuang, Xiaoyong, Heng Guo, Jia Liang, and Shaoying Wang. "Synthesis and photoluminescence properties of novel red-emitting KBaLu(MoO4)3:Eu3+ phosphors with high thermal stability and high color purity." Inorganic Chemistry Communications 116 (June 2020): 107938. http://dx.doi.org/10.1016/j.inoche.2020.107938.
Pełny tekst źródła