Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Thermoelectric Power.

Artykuły w czasopismach na temat „Thermoelectric Power”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Thermoelectric Power”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Saqr, Khalid, and Mohd Musa. "Critical review of thermoelectrics in modern power generation applications." Thermal Science 13, no. 3 (2009): 165–74. http://dx.doi.org/10.2298/tsci0903165s.

Pełny tekst źródła
Streszczenie:
The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric
Style APA, Harvard, Vancouver, ISO itp.
2

Yanagi, Kazuhiro. "(Digital Presentation) Strategy to Enhance the Power Factor in Carbon Nanotubes." ECS Meeting Abstracts MA2022-01, no. 7 (2022): 644. http://dx.doi.org/10.1149/ma2022-017644mtgabs.

Pełny tekst źródła
Streszczenie:
Flexible thermoelectrics, which can convert waste heat into electricity at surfaces with various shapes and moving parts, is one of important techniques for efficient use of our limited energy resources. Carbon nanotubes are one of possible candidates for flexible thermoelectrics, and then we have investigated the relationships between electronic structure, location of Fermi-energy level, morphology, and thermoelectric performance of the carbon nanotubes. Particularly, we have clarified the one-dimensional characteristics in thermoelectric properties of single walled carbon nanotubes (SWCNTs).
Style APA, Harvard, Vancouver, ISO itp.
3

Dimitrov, Vladimir, and Simon Woodward. "Capturing Waste Heat Energy with Charge-Transfer Organic Thermoelectrics." Synthesis 50, no. 19 (2018): 3833–42. http://dx.doi.org/10.1055/s-0037-1610208.

Pełny tekst źródła
Streszczenie:
Electrically conducting organic salts, known for over 60 years, have recently demonstrated new abilities to convert waste heat directly into electrical power via the thermoelectric effect. Multiple opportunities are emerging for new structure–property relationships and for new materials to be obtained through synthetic organic chemistry. This review highlights key aspects of this field, which is complementary to current efforts based on polymeric, nanostructured or inorganic thermoelectric materials and indicates opportunities whereby mainstream organic chemists can contribute.1 What Are Therm
Style APA, Harvard, Vancouver, ISO itp.
4

Liang, Jiasheng, Tuo Wang, Pengfei Qiu, et al. "Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices." Energy & Environmental Science 12, no. 10 (2019): 2983–90. http://dx.doi.org/10.1039/c9ee01777a.

Pełny tekst źródła
Streszczenie:
Flexible thermoelectrics is a synergy of flexible electronics and thermoelectric energy conversion. In this work, we fabricated flexible full-inorganic thermoelectric power generation modules based on doped silver chalcogenides.
Style APA, Harvard, Vancouver, ISO itp.
5

Yazawa, Kazuaki, and Ali Shakouri. "Heat Flux Based Optimization of Combined Heat and Power Thermoelectric Heat Exchanger." Energies 14, no. 22 (2021): 7791. http://dx.doi.org/10.3390/en14227791.

Pełny tekst źródła
Streszczenie:
We analyzed the potential of thermoelectrics for electricity generation in a combined heat and power (CHP) waste heat recovery system. The state-of-the-art organic Rankine cycle CHP system provides hot water and space heating while electricity is also generated with an efficiency of up to 12% at the MW scale. Thermoelectrics, in contrast, will serve smaller and distributed systems. Considering the limited heat flux from the waste heat source, we investigated a counterflow heat exchanger with an integrated thermoelectric module for maximum power, high efficiency, or low cost. Irreversible therm
Style APA, Harvard, Vancouver, ISO itp.
6

Simons, R. E., M. J. Ellsworth, and R. C. Chu. "An Assessment of Module Cooling Enhancement With Thermoelectric Coolers." Journal of Heat Transfer 127, no. 1 (2005): 76–84. http://dx.doi.org/10.1115/1.1852496.

Pełny tekst źródła
Streszczenie:
The trend towards increasing heat flux at the chip and module level in computers is continuing. This trend coupled with the desire to increase performance by reducing chip operating temperatures presents a further challenge to thermal engineers. This paper will provide an assessment of the potential for module cooling enhancement with thermoelectric coolers. A brief background discussion of thermoelectric cooling is provided citing some of the early history of thermoelectrics as well as more recent developments from the literature. An example analyzing cooling enhancement of a multichip module
Style APA, Harvard, Vancouver, ISO itp.
7

Yang, Qingyu, Shiqi Yang, Pengfei Qiu, et al. "Flexible thermoelectrics based on ductile semiconductors." Science 377, no. 6608 (2022): 854–58. http://dx.doi.org/10.1126/science.abq0682.

Pełny tekst źródła
Streszczenie:
Flexible thermoelectrics provide a different solution for developing portable and sustainable flexible power supplies. The discovery of silver sulfide–based ductile semiconductors has driven a shift in the potential for flexible thermoelectrics, but the lack of good p-type ductile thermoelectric materials has restricted the reality of fabricating conventional cross-plane π-shaped flexible devices. We report a series of high-performance p-type ductile thermoelectric materials based on the composition-performance phase diagram in AgCu(Se,S,Te) pseudoternary solid solutions, with high figure-of-m
Style APA, Harvard, Vancouver, ISO itp.
8

Li, Na, Xingfei Yu, Jinhai Xu, Qiuwang Wang, and Ting Ma. "Numerical study on thermoelectric-hydraulic performance of thermoelectric recuperator with wavy thermoelectric fins." High Temperatures-High Pressures 49, no. 5-6 (2020): 423–44. http://dx.doi.org/10.32908/hthp.v49.961.

Pełny tekst źródła
Streszczenie:
A thermoelectric-hydraulic numerical model is built for thermoelectric recuperators with wavy and straight fins under large longitudinal temperature difference, and their performance is analyzed. It is found that the comprehensive performance of the wavy-fin thermoelectric recuperator is better than that of straight-fin thermoelectric recuperator. The maximum output powers of the two thermoelectric recuperators are 0.251 mW and 0.236 mW at inlet velocity of 1.7 m � s-1. When the ratio of wave height to wave length is 0.1, the maximum output power is 0.251 mW and output power per unit volume is
Style APA, Harvard, Vancouver, ISO itp.
9

Duran, Solco Samantha Faye, Danwei Zhang, Wei Yang Samuel Lim, et al. "Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation." Crystals 12, no. 3 (2022): 307. http://dx.doi.org/10.3390/cryst12030307.

Pełny tekst źródła
Streszczenie:
Thermoelectrics can convert waste heat to electricity and vice versa. The energy conversion efficiency depends on materials figure of merit, zT, and Carnot efficiency. Due to the higher Carnot efficiency at a higher temperature gradient, high-temperature thermoelectrics are attractive for waste heat recycling. Among high-temperature thermoelectrics, silicon-based compounds are attractive due to the confluence of light weight, high abundance, and low cost. Adding to their attractiveness is the generally defect-tolerant nature of thermoelectrics. This makes them a suitable target application for
Style APA, Harvard, Vancouver, ISO itp.
10

Bergman, David J., and Leonid G. Fel. "Enhancement of thermoelectric power factor in composite thermoelectrics." Journal of Applied Physics 85, no. 12 (1999): 8205–16. http://dx.doi.org/10.1063/1.370660.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zhou, Ze Guang, Dong Sheng Zhu, Yin Sheng Huang, and Chan Wang. "Heat Sink Matching for Thermoelectric Generator." Advanced Materials Research 383-390 (November 2011): 6122–27. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.6122.

Pełny tekst źródła
Streszczenie:
Heat sink does affect on the performance of thermoelectirc generator according to the studies of many authors. In this paper, an analytical model inculding the number of thermocouples and the thermal resistance of heat sink is derived. The match between the thermoelectric module and heat sink is discussed by numerical calculation also. The results show that the thermal resistance of thermoelectric module should be designed to match that of heat sink in order to get the highest output power for a given heat sink. But for a given thermoelectric module, the output power increases with the decreas
Style APA, Harvard, Vancouver, ISO itp.
12

Manap, Muhammad Abdul, and Al Fikri. "Rancang Bangun Pembangkit Listrik Alternatif Menggunakan Termoelektrik dengan Memanfaatkan pada Tungku Pemanas." Journal of Electrical Power Control and Automation (JEPCA) 3, no. 2 (2020): 53. http://dx.doi.org/10.33087/jepca.v3i2.41.

Pełny tekst źródła
Streszczenie:
his study aims to design an alternative power generator using a thermoelectric generator (TEG) by utilizing a heating furnace, using two thermoelectric generators (TEG) connected in series. Thermoelectrics that take advantage of temperature differences can produce voltages that correspond to the seebeck effect. The alternative power generator that has been designed consist of a thermoelectric, boost converter, and a 5 Watt DC lamp load. The test was carried out using a Boost Converter and using a 5 Watt DC lamp load for 20 minutes. The results of the research using the Boost Converter produce
Style APA, Harvard, Vancouver, ISO itp.
13

Шабалдин, А. А., П. П. Константинов, Д. А. Курдюков та ін. "Термоэлектрические свойства нанокомпозитного Bi-=SUB=-0.45-=/SUB=-Sb-=SUB=-1.55-=/SUB=-Te-=SUB=-2.985-=/SUB=- с микрочастицами SiO-=SUB=-2-=/SUB=-". Физика и техника полупроводников 53, № 6 (2019): 751. http://dx.doi.org/10.21883/ftp.2019.06.47721.30.

Pełny tekst źródła
Streszczenie:
AbstractNanocomposite thermoelectrics based on Bi_0.45Sb_1.55Te_2.985 solid solution of p -type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO_2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without t
Style APA, Harvard, Vancouver, ISO itp.
14

Tharun Kumar G, Vincent Vidyasagar J, Ramesh M, and Akhila C R. "Functional implantable devices designed using bio-potential thermoelectric generator." International Journal of Research in Phytochemistry and Pharmacology 9, no. 4 (2019): 39–42. http://dx.doi.org/10.26452/ijrpp.v9i4.1351.

Pełny tekst źródła
Streszczenie:
Thermo Electric Generator is a device which Converts warmth immediately into electric electricity the usage of a phenomenon known as the "Seebeck effect”. Unlike traditional dynamic warmness engines, thermoelectric generators contain no shifting components and are absolutely silent. But for small packages, thermoelectrics can end up competitive due to the fact they are compact, easy (inexpensive) and scalable. Thermoelectric systems may be without problems designed to perform with small heat resources and small temperature difference. The main aim of this project is to use BIO-POTENTIAL as a d
Style APA, Harvard, Vancouver, ISO itp.
15

Esposito, F. Paul, B. Goodman, and M. Ma. "Thermoelectric power fluctuations." Physical Review B 36, no. 8 (1987): 4507–9. http://dx.doi.org/10.1103/physrevb.36.4507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Amara, A., Y. Frongillo, M. J. Aubin, S. Jandl, J. M. Lopez-Castillo, and J. P. Jay-Gerin. "Thermoelectric power ofTiS2." Physical Review B 36, no. 12 (1987): 6415–19. http://dx.doi.org/10.1103/physrevb.36.6415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Harsito, Catur, Teguh Triyono, and Eki Roviyanto. "Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software." Civil Engineering Journal 8, no. 7 (2022): 1328–38. http://dx.doi.org/10.28991/cej-2022-08-07-02.

Pełny tekst źródła
Streszczenie:
The growing demand for energy has an impact on the development of environmentally friendly renewable energy. The sun is energy that has the potential to be used as electrical energy through light energy and heat energy. Recently, research interest related to photovoltaic performance has increased. Several studies have investigated the effect of panel cooling on photovoltaic performance. In this study, the use of exergy solar panels is considered to improve performance by adding a thermoelectric system. Research work related to photovoltaic testing with thermoelectrics at low temperatures has n
Style APA, Harvard, Vancouver, ISO itp.
18

Kostyuk, O., B. Dzundza, M. Maksymuk, V. Bublik, L. Chernyak, and Z. Dashevsky. "Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb)2Te3." Physics and Chemistry of Solid State 21, no. 4 (2020): 628–34. http://dx.doi.org/10.15330/pcss.21.4.628-634.

Pełny tekst źródła
Streszczenie:
Bismuth antimony telluride is the most commonly used commercial thermoelectric material for power generation and refrigeration over the temperature range of 200–400 K. Improving the performance of these materials is a complected balance of optimizing thermoelectric properties. Decreasing the grain size of Bi0.5Sb1.5Te3 significantly reduces the thermal conductivity due to the scattering phonons on the grain boundaries. In this work, it is shown the advances of spark plasma sintering (SPS) for the preparation of nanocrystalline p-type thermoelectrics based on Bi0.5Sb1.5Te3 at different temperat
Style APA, Harvard, Vancouver, ISO itp.
19

Sim, Jason, Rozli Zulkifli, and Shahrir Abdullah. "Conceptual Thermosyphonic Loop Cooled Thermoelectric Power Cogeneration System for Automotive Applications." Applied Mechanics and Materials 663 (October 2014): 294–98. http://dx.doi.org/10.4028/www.scientific.net/amm.663.294.

Pełny tekst źródła
Streszczenie:
Thermoelectric cogeneration may be applied to the exhaust of an automobile to generate additional electric power, by applying a temperature differential across the thermoelectric power generation modules. To obtain maximum net power, the highest allowable temperature difference should be obtained. Therefore, a cooling system should be employed to ensure that the cold side of the thermoelectric modules remain as cold as possible. An evaporative cooling system patented by Einstein and Szilard is used as a base for a non-parasitic cooling system to be used together with thermoelectric modules. Th
Style APA, Harvard, Vancouver, ISO itp.
20

Zavanelli, Duncan, Alexander Pröschel, Joshua Winograd, Radion Cherkez, and G. Jeffrey Snyder. "When power factor supersedes zT to determine power in a thermocouple." Journal of Applied Physics 131, no. 11 (2022): 115101. http://dx.doi.org/10.1063/5.0076742.

Pełny tekst źródła
Streszczenie:
The primary material parameter determining power in a thermoelectric is the figure of merit zT. This figure of merit comes from the requirement for thermal impedance matching between the thermoelectric legs and heat exchangers in an optimally designed thermoelectric module. However, in a thermocouple temperature sensor, the geometry is constrained for temperature sensing. If the geometry is constrained so that the length of the thermoelectric elements is greater than a characteristic length, then the material thermal conductivity becomes less relevant. This makes the power factor the determini
Style APA, Harvard, Vancouver, ISO itp.
21

Horii, Shigeru, Masayuki Sakurai, Tetsuo Uchikoshi, et al. "Fabrication of Multi-Layered Thermoelectric Thick Films and their Thermoelectric Performance." Key Engineering Materials 412 (June 2009): 291–96. http://dx.doi.org/10.4028/www.scientific.net/kem.412.291.

Pełny tekst źródła
Streszczenie:
We report the fabrication of p- and n-type thermoelectric oxide thick films laminated by insulating alumina using electrophoretic deposition and their thermoelectric performance. From the experimental studies performed for optimization of the thermoelectric performance in the p- and n-type mono-layers, the control of sintering temperature for densification and the usage of fine powder were effective for reducing the electrical resistivity of thermoelectric layers. These findings could be applicable also to the triple-layered thick films. When one assumes that two triple-layered films of p- and
Style APA, Harvard, Vancouver, ISO itp.
22

Dipak S. Patil and Dhananjay K. Chaudhari. "Theoretical analysis of thermoelectric module." World Journal of Advanced Engineering Technology and Sciences 8, no. 1 (2023): 157–64. http://dx.doi.org/10.30574/wjaets.2023.8.1.0025.

Pełny tekst źródła
Streszczenie:
A thermoelectric generator was used to recover waste heat from a heat source, such as engine exhaust. The key elements of the thermoelectric generator are heat exchanger and thermoelectric module. Thermoelectric modules convert heat energy to electrical energy using the Seebeck effect. A temperature difference between the hot and cold sides of the thermoelectric module is required to generate electric power. A theoretical model was developed to predict thermoelectric current, voltage, and power output. A bismuth Telluride thermoelectric module was used for analysis. It was observed that the th
Style APA, Harvard, Vancouver, ISO itp.
23

Ma, Ting, Zuoming Qu, Xingfei Yu, Xing Lu, and Qiuwang Wang. "A review on thermoelectric-hydraulic performance and heat transfer enhancement technologies of thermoelectric power generator system." Thermal Science 22, no. 5 (2018): 1885–903. http://dx.doi.org/10.2298/tsci180102274m.

Pełny tekst źródła
Streszczenie:
The thermoelectric material is considered to a good choice to recycle the waste heat in the power and energy systems because the thermoelectric material is a solid-state energy converter which can directly convert thermal energy into electrical energy, especially suitable for high temperature power and energy systems due to the large temperature difference. However, the figure of merit of thermoelectric material is very low, and the thermoelectric power of generator system is even lower. This work reviews the recent progress on the thermoelectric power generator system from the view of heat tr
Style APA, Harvard, Vancouver, ISO itp.
24

Wang, Qing Hua, Jian Zhong Zhang, Li Li Zhang, and Ze Shen Wang. "Heat to Electricity Conversion Efficiency Measurement for Thermoelectric Unicouple." Key Engineering Materials 336-338 (April 2007): 883–87. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.883.

Pełny tekst źródła
Streszczenie:
The conversion efficiency of heat to electricity is the basic parameter of thermoelectric element, thermoelectric unicouple and thermoelectric devices. In principle, the heat to electricity conversion efficiency of thermoelectric element has been defined as the electrical output power of the element divided by its thermal input power. Due to the heat loss by convection and radiation heat transfer the test result of the heat to electricity conversion efficiency has a large errors. The authors present a test method for heat to electricity conversion efficiency of thermoelectric unicouple. The th
Style APA, Harvard, Vancouver, ISO itp.
25

Feldhoff, Armin. "Power Conversion and Its Efficiency in Thermoelectric Materials." Entropy 22, no. 8 (2020): 803. http://dx.doi.org/10.3390/e22080803.

Pełny tekst źródła
Streszczenie:
The basic principles of thermoelectrics rely on the coupling of entropy and electric charge. However, the long-standing dispute of energetics versus entropy has long paralysed the field. Herein, it is shown that treating entropy and electric charge in a symmetric manner enables a simple transport equation to be obtained and the power conversion and its efficiency to be deduced for a single thermoelectric material apart from a device. The material’s performance in both generator mode (thermo-electric) and entropy pump mode (electro-thermal) are discussed on a single voltage-electrical current c
Style APA, Harvard, Vancouver, ISO itp.
26

Wang, Chun Lei, Yuan Hu Zhu, Wen Bin Su, Jian Liu, and Ji Chao Li. "Revisit of Thermoelectric Efficiency and Figure-of-Merit." Materials Science Forum 787 (April 2014): 195–97. http://dx.doi.org/10.4028/www.scientific.net/msf.787.195.

Pełny tekst źródła
Streszczenie:
Thermoelectric efficiency power generation represented based on the transportation equations obtained under different physical boundary conditions in the present investigation. The figure-of-merit and power factor derived from optimizing thermoelectric efficiency and maximizing power output. It is interesting to note that the maximum output power reached when the load resistance was the thermoelectric adiabatic resistance, while the optimized thermoelectric efficiency responded the isothermal resistance. The possible approach to characterizing these thermoelectric parameters proposed in the pr
Style APA, Harvard, Vancouver, ISO itp.
27

Bian, Mingxin, Zhiheng Xu, Xiaobin Tang, Hongyang Jia, Yuqiao Wang, and Andreu Cabot. "Solution-based 3D printed thermoelectric composite for custom-shaped thermoelectric generator applications." Journal of Alloys and Compounds 976 (March 5, 2024): 173202. https://doi.org/10.1016/j.jallcom.2023.173202.

Pełny tekst źródła
Streszczenie:
To fulfill the ever-increasing power demands of deep space exploration, the output performance of radioisotope thermoelectric generators, the only accessible power source, must be enhanced in several aspects, including thermoelectric properties of materials, geometry, welding, etc. In this study, we present our results on the development of a novel thermoelectric slurry suitable for the 3D printing of thermoelectric generators with optimized leg geometry. The rheological properties of the slurry are optimized by combining proper amounts of organic solvent, binder, and bismuth telluride-based t
Style APA, Harvard, Vancouver, ISO itp.
28

Woo, Byung Chul, and Hee Woong Lee. "Relation Between Electric Power and Temperature Difference for Thermoelectric Generator." International Journal of Modern Physics B 17, no. 08n09 (2003): 1421–26. http://dx.doi.org/10.1142/s0217979203019095.

Pełny tekst źródła
Streszczenie:
The thermoelectric generation is the direct energy conversion method from heat to electric power. The conversion method is a very useful utilization of waste energy because of its possibility using a thermal energy below 423K. This research objective is to establish the thermoelectric technology on an optimum system design method and efficiency, and cost effective thermoelectric element in order to extract the maximum electric power from a wasted hot water. This paper is considered in manufacturing a thermoelectric generator and manufacturing of thermoelectric generator with 32 thermoelectric
Style APA, Harvard, Vancouver, ISO itp.
29

Yang, Jihui, and Thierry Caillat. "Thermoelectric Materials for Space and Automotive Power Generation." MRS Bulletin 31, no. 3 (2006): 224–29. http://dx.doi.org/10.1557/mrs2006.49.

Pełny tekst źródła
Streszczenie:
AbstractHistorically, thermoelectric technology has only occupied niche areas, such as the radioisotope thermoelectric generators for NASA's spacecrafts, where the low cooling coefficient of performance (COP) and energy-conversion efficiency are outweighed by the application requirements.Recent materials advances and an increasing awareness of energy and environmental conservation issues have rekindled prospects for automotive and other applications of thermoelectric materials.This article reviews thermoelectric energy-conversion technology for radioisotope space power systems and several prop
Style APA, Harvard, Vancouver, ISO itp.
30

CHOUDHARY, K. K., D. PRASAD, K. JAYAKUMAR, and DINESH VARSHNEY. "PHONON DRAG, CARRIER DIFFUSIVE THERMOELECTRIC POWER AND SEMICONDUCTING RESISTIVITY BEHAVIOR OF Zn NANOWIRES." International Journal of Nanoscience 09, no. 05 (2010): 453–59. http://dx.doi.org/10.1142/s0219581x10007022.

Pełny tekst źródła
Streszczenie:
In this paper, we undertake a quantitative analysis of observed temperature-dependent thermoelectric power (S) of 4 nm Zn /Vycor composite nanowires by developing a model Hamiltonian that incorporates scattering of acoustic phonons with impurities, grain boundaries, charge carriers and phonons. Mott expression is used to determine the carrier diffusive thermoelectric power [Formula: see text]. The [Formula: see text] shows linear temperature dependence and the computed [Formula: see text] when subtracted from the experimental data is interpreted as phonon drag thermoelectric power [Formula: se
Style APA, Harvard, Vancouver, ISO itp.
31

Zhang, Wenjie, Jiajun Zhang, Fengcheng Huang, Yuqiang Zhao, and Yongheng Zhong. "Study of the Application Characteristics of Photovoltaic-Thermoelectric Radiant Windows." Energies 14, no. 20 (2021): 6645. http://dx.doi.org/10.3390/en14206645.

Pełny tekst źródła
Streszczenie:
Through experiments and numerical simulation, this paper studies the related performance of a photovoltaic thermoelectric radiation cooling window structure, verifies the accuracy of the established solar thermoelectric radiation window calculation model, and analyzes the cooling performance of different parameters of thermoelectric sheet, radiation plate, and photovoltaic panel. On the basis of considering the relationship between the power generation and power consumption of the structure, the numerical calculation results show that the solar thermoelectric radiation window with non-transpar
Style APA, Harvard, Vancouver, ISO itp.
32

Parveen, S., S. Victor Vedanayakam, and R. Padma Suvarna. "Thermoelectric generator electrical performance based on temperature of thermoelectric materials." International Journal of Engineering & Technology 7, no. 3.29 (2018): 189. http://dx.doi.org/10.14419/ijet.v7i3.29.18792.

Pełny tekst źródła
Streszczenie:
In space applications, the radioisotope thermoelectric generators are being used for the power generation. The energy storage devices like fuel cells, solar cells cannot function in remote areas, in such cases the power generating systems can work successfully for generating electrical power in space missions. The efficiency of thermo electric generators is around 5% to 8% . Bismuth telluride has high electrical conductivity (1.1 x 105S.m /m2) and very low thermal conductivity (1.20 W/ m.K). A Thermoelectric generator has been built up consisting of a Bi2Te3 based on thermoelectric module. The
Style APA, Harvard, Vancouver, ISO itp.
33

Ogawa, Yoshihiko, Hideo Watanabe, Motohiro Sakai, and Katsuhiro Tunou. "Analysis of thermoelectric power generation using thermoelectric element." Electronics and Communications in Japan (Part II: Electronics) 77, no. 5 (1994): 93–105. http://dx.doi.org/10.1002/ecjb.4420770510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Takeuchi, Tsunehiro. "Thermoelectric Power in Metals." Journal of the Japan Institute of Metals 69, no. 5 (2005): 403–12. http://dx.doi.org/10.2320/jinstmet.69.403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hou, Chengyi, and Meifang Zhu. "Semiconductors flex thermoelectric power." Science 377, no. 6608 (2022): 815–16. http://dx.doi.org/10.1126/science.add7029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kwon, O. H., Yoshifumi Fukushima, Mitsuo Sugimoto, and Nobuyuki Hiratsuka. "Thermoelectric Power of Ferrites." Journal of the Japan Society of Powder and Powder Metallurgy 44, no. 3 (1997): 283–87. http://dx.doi.org/10.2497/jjspm.44.283.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Rathnayaka, K. D. D. "Thermoelectric power of Manganin." Journal of Physics E: Scientific Instruments 18, no. 5 (1985): 380–81. http://dx.doi.org/10.1088/0022-3735/18/5/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Bao, W. S., S. Y. Liu, and X. L. Lei. "Thermoelectric power in graphene." Journal of Physics: Condensed Matter 22, no. 31 (2010): 315502. http://dx.doi.org/10.1088/0953-8984/22/31/315502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Uher, C., S. D. Peacor, and A. B. Kaiser. "Thermoelectric power ofBa1−xKxBiO3." Physical Review B 43, no. 10 (1991): 7955–59. http://dx.doi.org/10.1103/physrevb.43.7955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lee, Hyun Jung, Myoung-Hwan Kim, S. H. Park, H. C. Kim, J. Y. Kim, and B. K. Cho. "Thermoelectric power study of." Physica B: Condensed Matter 378-380 (May 2006): 626–27. http://dx.doi.org/10.1016/j.physb.2006.01.180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kim, D. C., J. S. Kim, B. H. Kim, Y. W. Park, C. U. Jung, and S. I. Lee. "Thermoelectric power of MgB2." Physica C: Superconductivity 387, no. 3-4 (2003): 313–20. http://dx.doi.org/10.1016/s0921-4534(03)00626-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Goesmann, F., and D. I. Jones. "Thermoelectric power under illumination." Journal of Non-Crystalline Solids 137-138 (January 1991): 471–74. http://dx.doi.org/10.1016/s0022-3093(05)80157-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Maddison, D. S., R. B. Roberts, and J. Unsworth. "Thermoelectric power of polypyrrole." Synthetic Metals 33, no. 3 (1989): 281–87. http://dx.doi.org/10.1016/0379-6779(89)90474-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Isikawa, Yosikazu, Kazuya Somiya, Huruto Koyanagi, Toshio Mizushima, Tomohiko Kuwai, and Takashi Tayama. "Thermoelectric power of PrMg3." Journal of Physics: Conference Series 200, no. 1 (2010): 012069. http://dx.doi.org/10.1088/1742-6596/200/1/012069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Sakurai, Junji, Yoshinori Yamamoto, and Yukitomo Komura. "Thermoelectric Power of MnSi." Journal of the Physical Society of Japan 57, no. 1 (1988): 24–25. http://dx.doi.org/10.1143/jpsj.57.24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ouseph, P. J., та M. Ray O’Bryan. "Thermoelectric power ofYBa2Cu3O7−δ". Physical Review B 41, № 7 (1990): 4123–25. http://dx.doi.org/10.1103/physrevb.41.4123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Xu, X. Q., S. J. Hagen, W. Jiang, J. L. Peng, Z. Y. Li, and R. L. Greene. "Thermoelectric power ofNd2−xCexCuO4crystals." Physical Review B 45, no. 13 (1992): 7356–59. http://dx.doi.org/10.1103/physrevb.45.7356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

AHLGREN, E., and F. WILLYPOULSEN. "Thermoelectric power of YSZ." Solid State Ionics 70-71 (May 1994): 528–32. http://dx.doi.org/10.1016/0167-2738(94)90366-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Chen, Yan, Xiangnan Hou, Chunyan Ma, Yinke Dou, and Wentao Wu. "Review of Development Status of Bi2Te3-Based Semiconductor Thermoelectric Power Generation." Advances in Materials Science and Engineering 2018 (November 21, 2018): 1–9. http://dx.doi.org/10.1155/2018/1210562.

Pełny tekst źródła
Streszczenie:
Semiconductor thermoelectric power generation is a new type of energy-saving and environment-friendly power generation technology, which directly converts heat energy into electrical energy by using the characteristics of semiconductor thermoelectric materials and has broad application prospects. This paper introduces the basic principles of thermoelectric materials and semiconductor thermoelectric power generation. The research status and progress of Bi2Te3-based semiconductor materials and thermoelectric generators in recent years are also introduced, respectively. Then, the paper emphasizes
Style APA, Harvard, Vancouver, ISO itp.
50

Saito, Tetsuji, and Hayai Watanabe. "Magnetic and Thermoelectric Properties of Fe2CoGa Heusler Compounds." Inorganics 13, no. 2 (2025): 33. https://doi.org/10.3390/inorganics13020033.

Pełny tekst źródła
Streszczenie:
The investigation of the properties of Heusler compounds is an important task that will pave the way for new applications in various fields related to magnetics and thermoelectrics. This study examines the magnetic and thermoelectric properties of Fe2CoGa Heusler compounds prepared by casting and subsequent annealing. The Fe2CoGa Heusler compound was found to be ferromagnetic, with a large saturation magnetization of 110 emu/g and a high Curie temperature of 1011 K. The Fe2CoGa Heusler compound was a good thermoelectric material, with a negative Seebeck coefficient of −44 μV/K, a low electrica
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!