Artykuły w czasopismach na temat „Time-Aware LSTM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Time-Aware LSTM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cheng, Lin, Yuliang Shi, Kun Zhang, Xinjun Wang i Zhiyong Chen. "GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction". ACM Transactions on Knowledge Discovery from Data 15, nr 3 (maj 2021): 1–16. http://dx.doi.org/10.1145/3441454.
Pełny tekst źródłaWiessner, Paul, Grigor Bezirganyan, Sana Sellami, Richard Chbeir i Hans-Joachim Bungartz. "Uncertainty-Aware Time Series Anomaly Detection". Future Internet 16, nr 11 (31.10.2024): 403. http://dx.doi.org/10.3390/fi16110403.
Pełny tekst źródłaYadulla, Akhila Reddy, Mounica Yenugula, Vinay Kumar Kasula, Bhargavi Konda, Santosh Reddy Addula i Sarath Babu Rakki. "A time-aware LSTM model for detecting criminal activities in blockchain transactions". International Journal of Communication and Information Technology 4, nr 2 (1.07.2023): 33–39. https://doi.org/10.33545/2707661x.2023.v4.i2a.108.
Pełny tekst źródłaYang, Xuan, i James A. Esquivel. "Time-Aware LSTM Neural Networks for Dynamic Personalized Recommendation on Business Intelligence". Tsinghua Science and Technology 29, nr 1 (luty 2024): 185–96. http://dx.doi.org/10.26599/tst.2023.9010025.
Pełny tekst źródłaChen, Long, Zhiyao Tian, Shunhua Zhou, Quanmei Gong i Honggui Di. "Attitude deviation prediction of shield tunneling machine using Time-Aware LSTM networks". Transportation Geotechnics 45 (marzec 2024): 101195. http://dx.doi.org/10.1016/j.trgeo.2024.101195.
Pełny tekst źródłaChen, Jie, Chang Liu, Jiawu Xie, Jie An i Nan Huang. "Time–Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation". Sensors 22, nr 15 (26.07.2022): 5598. http://dx.doi.org/10.3390/s22155598.
Pełny tekst źródłaZhang, Jinkai, Wenming Ma, En Zhang i Xuchen Xia. "Time-Aware Dual LSTM Neural Network with Similarity Graph Learning for Remote Sensing Service Recommendation". Sensors 24, nr 4 (11.02.2024): 1185. http://dx.doi.org/10.3390/s24041185.
Pełny tekst źródłaZheng, Ruixuan, Yanping Bao, Lihua Zhao i Lidong Xing. "Prediction of steelmaking process variables using K-medoids and a time-aware LSTM network". Heliyon 10, nr 12 (czerwiec 2024): e32901. http://dx.doi.org/10.1016/j.heliyon.2024.e32901.
Pełny tekst źródłaSubapriya Vijayakumar i Rajaprakash Singaravelu. "Time Aware Long Short-Term Memory and Kronecker Gated Intelligent Transportation for Smart Car Parking". Journal of Advanced Research in Applied Sciences and Engineering Technology 44, nr 1 (26.04.2024): 134–50. http://dx.doi.org/10.37934/araset.44.1.134150.
Pełny tekst źródłaGui, Zhipeng, Yunzeng Sun, Le Yang, Dehua Peng, Fa Li, Huayi Wu, Chi Guo, Wenfei Guo i Jianya Gong. "LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points". Neurocomputing 440 (czerwiec 2021): 72–88. http://dx.doi.org/10.1016/j.neucom.2021.01.067.
Pełny tekst źródłaLees, Thomas, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon i Simon J. Dadson. "Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models". Hydrology and Earth System Sciences 25, nr 10 (21.10.2021): 5517–34. http://dx.doi.org/10.5194/hess-25-5517-2021.
Pełny tekst źródłaAnan, Muhammad, Khalid Kanaan, Driss Benhaddou, Nidal Nasser, Basheer Qolomany, Hanaa Talei i Ahmad Sawalmeh. "Occupant-Aware Energy Consumption Prediction in Smart Buildings Using a LSTM Model and Time Series Data". Energies 17, nr 24 (21.12.2024): 6451. https://doi.org/10.3390/en17246451.
Pełny tekst źródłaPark, Hyun Joon, Min Seok Lee, Dong Il Park i Sung Won Han. "Time-Aware and Feature Similarity Self-Attention in Vessel Fuel Consumption Prediction". Applied Sciences 11, nr 23 (4.12.2021): 11514. http://dx.doi.org/10.3390/app112311514.
Pełny tekst źródłaZhang, Jiangnan, Hai Wang, Fengjuan Cui, Yongshuo Liu, Zhenxing Liu i Junyu Dong. "Research into Ship Trajectory Prediction Based on An Improved LSTM Network". Journal of Marine Science and Engineering 11, nr 7 (22.06.2023): 1268. http://dx.doi.org/10.3390/jmse11071268.
Pełny tekst źródłaKim, Jonghong, Inchul Choi i Minho Lee. "Context Aware Video Caption Generation with Consecutive Differentiable Neural Computer". Electronics 9, nr 7 (17.07.2020): 1162. http://dx.doi.org/10.3390/electronics9071162.
Pełny tekst źródłaNg, Yu Nie, Han Ying Lim, Ying Chyi Cham, Mohd Aftar Abu Bakar i Noratiqah Mohd Ariff. "Comparison Between LSTM, GRU and VARIMA in Forecasting of Air Quality Time Series Data". Malaysian Journal of Fundamental and Applied Sciences 20, nr 6 (16.12.2024): 1248–60. https://doi.org/10.11113/mjfas.v20n6.3411.
Pełny tekst źródłaYuan, Xiaofeng, Lin Li, Kai Wang i Yalin Wang. "Sampling-Interval-Aware LSTM for Industrial Process Soft Sensing of Dynamic Time Sequences With Irregular Sampling Measurements". IEEE Sensors Journal 21, nr 9 (1.05.2021): 10787–95. http://dx.doi.org/10.1109/jsen.2021.3056210.
Pełny tekst źródłaOzpinar, Alper, i Arma Deger Mut. "Multidimensional Next-Generation Time and Transition-Aware Product Recommendation System". European Journal of Research and Development 4, nr 2 (31.05.2024): 229–46. http://dx.doi.org/10.56038/ejrnd.v4i2.458.
Pełny tekst źródłaKratzert, Frederik, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter i Grey Nearing. "Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets". Hydrology and Earth System Sciences 23, nr 12 (17.12.2019): 5089–110. http://dx.doi.org/10.5194/hess-23-5089-2019.
Pełny tekst źródłaZhang, Jiajun. "Time Series Analysis of Greenhouse Gas Emission Based on ARIMA and LSTM". Highlights in Science, Engineering and Technology 76 (31.12.2023): 378–84. http://dx.doi.org/10.54097/zy49qb44.
Pełny tekst źródłaPalanichamy, Indurani, i Firdaus Begam Basheer Ahamed. "Prediction of Seizure in the EEG Signal with Time Aware Recurrent Neural Network". Revue d'Intelligence Artificielle 36, nr 5 (23.12.2022): 717–24. http://dx.doi.org/10.18280/ria.360508.
Pełny tekst źródłaYuan, Yuan, Yuying Zhou, Xuanyou Chen, Qi Xiong i Hector Chimeremeze Okere. "Enhancing Recommendation Diversity and Novelty with Bi-LSTM and Mean Shift Clustering". Electronics 13, nr 19 (28.09.2024): 3841. http://dx.doi.org/10.3390/electronics13193841.
Pełny tekst źródłaMehta, Amiben Maheshbhai, i Kajal S. Patel. "LSTM-based Forecasting of Dengue Cases in Gujarat: A Machine Learning Approach". Indian Journal Of Science And Technology 17, nr 7 (15.02.2024): 635–42. http://dx.doi.org/10.17485/ijst/v17i7.2748.
Pełny tekst źródłaYaprakdal, Fatma, i Merve Varol Arısoy. "A Multivariate Time Series Analysis of Electrical Load Forecasting Based on a Hybrid Feature Selection Approach and Explainable Deep Learning". Applied Sciences 13, nr 23 (4.12.2023): 12946. http://dx.doi.org/10.3390/app132312946.
Pełny tekst źródłaWang, Yakun, Yajun Du, Jinrong Hu, Xianyong Li i Xiaoliang Chen. "SAEP: A Surrounding-Aware Individual Emotion Prediction Model Combined with T-LSTM and Memory Attention Mechanism". Applied Sciences 11, nr 23 (23.11.2021): 11111. http://dx.doi.org/10.3390/app112311111.
Pełny tekst źródłaPan, Feng, Bingyao Huang, Chunhong Zhang, Xinning Zhu, Zhenyu Wu, Moyu Zhang, Yang Ji, Zhanfei Ma i Zhengchen Li. "A survival analysis based volatility and sparsity modeling network for student dropout prediction". PLOS ONE 17, nr 5 (5.05.2022): e0267138. http://dx.doi.org/10.1371/journal.pone.0267138.
Pełny tekst źródłaPuchała, Sebastian, Włodzimierz Kasprzak i Paweł Piwowarski. "Human Interaction Classification in Sliding Video Windows Using Skeleton Data Tracking and Feature Extraction". Sensors 23, nr 14 (10.07.2023): 6279. http://dx.doi.org/10.3390/s23146279.
Pełny tekst źródłaAlam, Kazi Nabiul, Md Shakib Khan, Abdur Rab Dhruba, Mohammad Monirujjaman Khan, Jehad F. Al-Amri, Mehedi Masud i Majdi Rawashdeh. "Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data". Computational and Mathematical Methods in Medicine 2021 (2.12.2021): 1–15. http://dx.doi.org/10.1155/2021/4321131.
Pełny tekst źródłaFaudzi, A. A. M., M. M. Raslan i N. E. Alias. "IoT based real-time monitoring system of rainfall and water level for flood prediction using LSTM Network". IOP Conference Series: Earth and Environmental Science 1143, nr 1 (1.02.2023): 012015. http://dx.doi.org/10.1088/1755-1315/1143/1/012015.
Pełny tekst źródłaNi, Xiang, Jing Li, Mo Yu, Wang Zhou i Kun-Lung Wu. "Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 01 (3.04.2020): 857–64. http://dx.doi.org/10.1609/aaai.v34i01.5431.
Pełny tekst źródłaAlsaedi, Faisal, i Sara Masoud. "Condition-Based Maintenance for Degradation-Aware Control Systems in Continuous Manufacturing". Machines 13, nr 2 (12.02.2025): 141. https://doi.org/10.3390/machines13020141.
Pełny tekst źródłaTam, Prohim, Seungwoo Kang, Seyha Ros i Seokhoon Kim. "Enhancing QoS with LSTM-Based Prediction for Congestion-Aware Aggregation Scheduling in Edge Federated Learning". Electronics 12, nr 17 (27.08.2023): 3615. http://dx.doi.org/10.3390/electronics12173615.
Pełny tekst źródłaAbdullah, Hazem salim. "A comparison of several intrusion detection methods using the NSL-KDD dataset". Wasit Journal of Computer and Mathematics Science 3, nr 2 (30.06.2024): 32–41. http://dx.doi.org/10.31185/wjcms.251.
Pełny tekst źródłaYang, Hui, i Changchun Yang. "TIGNN-RL: Enabling time-sensitive and context-aware intelligent decision-making with dynamic graphs in recommender systems and biomechanics knowledge". Molecular & Cellular Biomechanics 22, nr 3 (13.02.2025): 1339. https://doi.org/10.62617/mcb1339.
Pełny tekst źródłaIbnu Sina, Muhammad Noer, i Erwin Budi Setiawan. "Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method". sinkron 8, nr 4 (1.10.2023): 2190–202. http://dx.doi.org/10.33395/sinkron.v8i4.12855.
Pełny tekst źródłaCayme, Karl Jensen, Vince Andrei Retutal, Miguel Edwin Salubre, Philip Virgil Astillo, Luis Gerardo Cañete i Gaurav Choudhary. "Gesture Recognition of Filipino Sign Language Using Convolutional and Long Short-Term Memory Deep Neural Networks". Knowledge 4, nr 3 (8.07.2024): 358–81. http://dx.doi.org/10.3390/knowledge4030020.
Pełny tekst źródłaIslam, Muhammad Zubair, A. S. M. Sharifuzzaman Sagar i Hyung Seok Kim. "Enabling Pandemic-Resilient Healthcare: Edge-Computing-Assisted Real-Time Elderly Caring Monitoring System". Applied Sciences 14, nr 18 (20.09.2024): 8486. http://dx.doi.org/10.3390/app14188486.
Pełny tekst źródłaLi, Bing, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen i Min Wu. "Two-Stream Convolution Augmented Transformer for Human Activity Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 1 (18.05.2021): 286–93. http://dx.doi.org/10.1609/aaai.v35i1.16103.
Pełny tekst źródłaNam, Seung-Joo, Gwiseong Moon, Jung-Hwan Park, Yoon Kim, Yun Jeong Lim i Hyun-Soo Choi. "Deep Learning-Based Real-Time Organ Localization and Transit Time Estimation in Wireless Capsule Endoscopy". Biomedicines 12, nr 8 (31.07.2024): 1704. http://dx.doi.org/10.3390/biomedicines12081704.
Pełny tekst źródłaWang, Ziteng, Junfeng Li i Yonghong Yan. "Target Speaker Localization Based on the Complex Watson Mixture Model and Time-Frequency Selection Neural Network". Applied Sciences 8, nr 11 (21.11.2018): 2326. http://dx.doi.org/10.3390/app8112326.
Pełny tekst źródłaNair, Biji, i S. Mary Saira Bhanu. "Task Scheduling in Fog Node within the Tactical Cloud". Defence Science Journal 72, nr 1 (5.01.2022): 49–55. http://dx.doi.org/10.14429/dsj.72.17039.
Pełny tekst źródłaLu, Tong, Sizu Hou i Yan Xu. "Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models". Processes 11, nr 8 (16.08.2023): 2461. http://dx.doi.org/10.3390/pr11082461.
Pełny tekst źródłaPandey, Neeraj Kumar, Manoj Diwakar, Achyut Shankar, Prabhishek Singh, Mohammad R. Khosravi i Vivek Kumar. "Energy Efficiency Strategy for Big Data in Cloud Environment Using Deep Reinforcement Learning". Mobile Information Systems 2022 (11.08.2022): 1–11. http://dx.doi.org/10.1155/2022/8716132.
Pełny tekst źródłaXue, Mingfu, Junyu Zhu, Rusheng Wu, Xiayiwei Zhang i Yuan Chen. "BRP-Net: A discrete-aware network based on attention mechanisms and LSTM for birth rate prediction in prefecture-level cities". PLOS ONE 19, nr 9 (12.09.2024): e0307721. http://dx.doi.org/10.1371/journal.pone.0307721.
Pełny tekst źródłaDash, Debadatta, Paul Ferrari, Satwik Dutta i Jun Wang. "NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals". Sensors 20, nr 8 (16.04.2020): 2248. http://dx.doi.org/10.3390/s20082248.
Pełny tekst źródłaSidhu, Kamaljeet Kaur, Habeeb Balogun i Kazeem Oluwakemi Oseni. ""Predictive Modelling of Air Quality Index (AQI) Across Diverse Cities and States of India using Machine Learning: Investigating the Influence of Punjab's Stubble Burning on AQI Variability"". International Journal of Managing Information Technology 16, nr 1 (28.02.2024): 15–35. http://dx.doi.org/10.5121/ijmit.2024.16102.
Pełny tekst źródłaTariq, Usman. "Optimized Feature Selection for DDoS Attack Recognition and Mitigation in SD-VANETs". World Electric Vehicle Journal 15, nr 9 (28.08.2024): 395. http://dx.doi.org/10.3390/wevj15090395.
Pełny tekst źródłaWang, Chunli, Linming Xu, Hongxin Zhu i Xiaoyang Cheng. "Robustness study of speaker recognition based on ECAPA-TDNN-CIFG". Journal of Computational Methods in Sciences and Engineering 24, nr 4-5 (14.08.2024): 3287–96. http://dx.doi.org/10.3233/jcm-247581.
Pełny tekst źródłaKamal, Saurabh, Sahil Sharma, Vijay Kumar, Hammam Alshazly, Hany S. Hussein i Thomas Martinetz. "Trading Stocks Based on Financial News Using Attention Mechanism". Mathematics 10, nr 12 (10.06.2022): 2001. http://dx.doi.org/10.3390/math10122001.
Pełny tekst źródłaDo, Nhu-Tai, Soo-Hyung Kim, Hyung-Jeong Yang, Guee-Sang Lee i Soonja Yeom. "Context-Aware Emotion Recognition in the Wild Using Spatio-Temporal and Temporal-Pyramid Models". Sensors 21, nr 7 (27.03.2021): 2344. http://dx.doi.org/10.3390/s21072344.
Pełny tekst źródła