Gotowa bibliografia na temat „Time-Varying capacity networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Time-Varying capacity networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Time-Varying capacity networks"
Sas, Bart, Elena Bernal-Mor, Kathleen Spaey, Vicent Pla, Chris Blondia i Jorge Martinez-Bauset. "Modelling the time-varying cell capacity in LTE networks". Telecommunication Systems 55, nr 2 (8.08.2013): 299–313. http://dx.doi.org/10.1007/s11235-013-9782-2.
Pełny tekst źródłaKUMARI, SUCHI, i ANURAG SINGH. "TIME-VARYING NETWORK MODELING AND ITS OPTIMAL ROUTING STRATEGY". Advances in Complex Systems 21, nr 02 (marzec 2018): 1850006. http://dx.doi.org/10.1142/s0219525918500066.
Pełny tekst źródłaBhadra, Sandeep, Yingdong Lu i Mark S. Squillante. "Optimal capacity planning in stochastic loss networks with time-varying workloads". ACM SIGMETRICS Performance Evaluation Review 35, nr 1 (12.06.2007): 227–38. http://dx.doi.org/10.1145/1269899.1254909.
Pełny tekst źródłaAbrantes, F., Joao Taveira Araújo i M. Ricardo. "Explicit Congestion Control Algorithms for Time Varying Capacity Media". IEEE Transactions on Mobile Computing 10, nr 1 (styczeń 2011): 81–93. http://dx.doi.org/10.1109/tmc.2010.143.
Pełny tekst źródłaAmiri, Ali, i Hasan Pirkul. "Routing and capacity assignment in backbone communication networks under time varying traffic conditions". European Journal of Operational Research 117, nr 1 (sierpień 1999): 15–29. http://dx.doi.org/10.1016/s0377-2217(98)00162-3.
Pełny tekst źródłaSupittayapornpong, Sucha, i Poompat Saengudomlert. "Joint Flow Control, Routing and Medium Access Control in Random Access Multi-Hop Wireless Networks with Time Varying Link Capacities". ECTI Transactions on Electrical Engineering, Electronics, and Communications 8, nr 1 (1.08.2009): 22–31. http://dx.doi.org/10.37936/ecti-eec.201081.171988.
Pełny tekst źródłaHuang, Ping, Xiao-Long Chen, Ming Tang i Shi-Min Cai. "Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks". Complexity 2021 (27.03.2021): 1–11. http://dx.doi.org/10.1155/2021/6629105.
Pełny tekst źródłaXu, Yao, Renren Wang, Hongqian Lu, Xingxing Song, Yahan Deng i Wuneng Zhou. "Adaptive Event-Triggered Synchronization of Networked Neural Networks with Time-Varying Delay Subject to Actuator Saturation". Complexity 2021 (7.07.2021): 1–14. http://dx.doi.org/10.1155/2021/9957624.
Pełny tekst źródłaShao, Junyi, Shuai Zhang, Weiqiang Sun i Weisheng Hu. "Dimensioning access link capacity for time-varying traffic with mixed packet streams and circuit connections". Journal of Optical Communications and Networking 13, nr 11 (20.08.2021): 276. http://dx.doi.org/10.1364/jocn.432651.
Pełny tekst źródłaKennedy, Okokpujie, Emmanuel Chukwu, Olamilekan Shobayo, Etinosa Noma-Osaghae, Imhade Okokpujie i Modupe Odusami. "Comparative analysis of the performance of various active queue management techniques to varying wireless network conditions". International Journal of Electrical and Computer Engineering (IJECE) 9, nr 1 (1.02.2019): 359. http://dx.doi.org/10.11591/ijece.v9i1.pp359-368.
Pełny tekst źródłaRozprawy doktorskie na temat "Time-Varying capacity networks"
Ky, Joël Roman. "Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks". Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Pełny tekst źródłaThe evolution of networks has driven the emergence of low-latency (LL) applications such as cloud gaming (CG) and cloud virtual reality (Cloud VR), which demand stringent network conditions, including low latency and high bandwidth. However, time-varying capacity networks introduce impairments such as delays, bandwidth fluctuations, and packet loss, which can significantly degrade user experience on LL applications. This research aims to design methodologies for detecting and diagnosing performance anomalies in LL applications operating over cellular and Wi- Fi networks. To achieve this, realistic experimental testbeds were established to collect datasets that characterize network performance and capture key performance indicators (KPIs) of CG and Cloud VR applications over 4G and Wi-Fi environments. These datasets serve as the foundation for evaluating and developing machine learning-based anomaly detection and diagnostic frameworks. The key contributions of this thesis include the development of CATS, a contrastive learning-based anomaly detection framework capable of efficiently identifying user experience degradation in CG applications while remaining robust to data contamination. Additionally, this research introduces RAID, a two-stage root causes diagnosis framework designed to pinpoint the root causes of performance issues in Cloud VR. RAID demonstrated high efficiency in diagnosing Wi-Fi impairments, even with limited labeled data. The findings of this work advance the fields of anomaly detection and root cause diagnosis, offering actionable insights for network operators to optimize network performance and enhance service reliability to support LL applications, which are set to revolutionize communication technologies and drive innovation across various industries
Części książek na temat "Time-Varying capacity networks"
Salazar, Jonathan, Diego Carrión i Manuel Jaramillo. "Impact Analysis on Voltage Stability by Inserting Non-Linear Loads Through a Dynamic Stability Index". W Lecture Notes in Networks and Systems, 373–83. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-87065-1_34.
Pełny tekst źródłaYan, Gongjun, Danda B. Rawat, Bhed Bahadur Bista, Wu He i Awny Alnusair. "Privacy Protection in Vehicular Ad-Hoc Networks". W Transportation Systems and Engineering, 272–309. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8473-7.ch013.
Pełny tekst źródłaYan, Gongjun, Danda B. Rawat, Bhed Bahadur Bista, Wu He i Awny Alnusair. "Privacy Protection in Vehicular Ad-Hoc Networks". W Security, Privacy, Trust, and Resource Management in Mobile and Wireless Communications, 295–332. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4691-9.ch013.
Pełny tekst źródłaMa, Maode, i Jinchang Lu. "QoS Support Mechanisms in WiMAX". W Wireless Network Traffic and Quality of Service Support, 330–46. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61520-771-8.ch013.
Pełny tekst źródłaGao, Yuan, Hai Fang i Kan Wang. "Cost-Efficient Service Function Chaining with CoMP Zero-Forcing Beamforming in Mobile Edge Networks". W Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220568.
Pełny tekst źródłaVendictis, Andrea De, i Andrea Baiocchi. "Investigating TCP single source behavior in time-varying capacity network scenarios". W Providing Quality of Service in Heterogeneous Environments, Proceedings of the 18th International Teletraffic Congress - ITC-18, 671–80. Elsevier, 2003. http://dx.doi.org/10.1016/s1388-3437(03)80216-0.
Pełny tekst źródłaBojkovic, Zoran, Bojan Bakmaz i Miodrag Bakmaz. "Principles and Enabling Technologies of 5G Network Slicing". W Paving the Way for 5G Through the Convergence of Wireless Systems, 271–84. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7570-2.ch011.
Pełny tekst źródłaAzzam-ul-Asar, M. Sadeeq Ullah, Mudasser F. Wyne, Jamal Ahmed i Riaz-ul-Hasnain. "Traffic Responsive Signal Timing Plan Generation based on Neural Network". W Intelligent, Adaptive and Reasoning Technologies, 229–40. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-595-7.ch012.
Pełny tekst źródłaStreszczenia konferencji na temat "Time-Varying capacity networks"
Gao, Ying, Ruiying Li i Rui Kang. "Capacity and Time Reliability Evaluation for Time-Varying Networks". W 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), 170–76. IEEE, 2024. http://dx.doi.org/10.1109/qrs-c63300.2024.00032.
Pełny tekst źródłaZhu, Xiangming, Yong LI, Depeng Jin i Pan Hui. "Temporal capacity graphs for time-varying mobile networks". W the 23rd International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2567948.2579362.
Pełny tekst źródłaBouterse, Brian, Harry Perros i David Thuente. "Multiobjective cloud capacity planning for time-varying customer demand". W 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET). IEEE, 2014. http://dx.doi.org/10.1109/honet.2014.7029367.
Pełny tekst źródłaTaylor, Stephen, i Parastoo Sadeghi. "Capacity analysis of time-varying flat-fading channels using particle methods". W 2007 Australasian Telecommunication Networks and Applications Conference (ATNAC 2007). IEEE, 2007. http://dx.doi.org/10.1109/atnac.2007.4665274.
Pełny tekst źródłaWu, Meng, Wenda Ni, Yabin Ye, Xiaoping Zheng, Yili Guo i Hanyi Zhang. "Capacity allocation for time-varying traffic in survivable WDM mesh networks". W Asia Pacific Optical Communications, redaktorzy Weisheng Hu, Shoa-Kai Liu, Ken-ichi Sato i Lena Wosinska. SPIE, 2008. http://dx.doi.org/10.1117/12.804301.
Pełny tekst źródłaBhadra, Sandeep, Yingdong Lu i Mark S. Squillante. "Optimal capacity planning in stochastic loss networks with time-varying workloads". W the 2007 ACM SIGMETRICS international conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1254882.1254909.
Pełny tekst źródłaIosifidis, George, Iordanis Koutsopoulos i Georgios Smaragdakis. "The impact of storage capacity on end-to-end delay in time varying networks". W IEEE INFOCOM 2011 - IEEE Conference on Computer Communications. IEEE, 2011. http://dx.doi.org/10.1109/infcom.2011.5934938.
Pełny tekst źródłaKhattabi, Yazid, i Mustafa M. Matalgah. "Performance analysis of AF cooperative networks with time-varying links: Error rate and capacity". W 2014 Wireless Telecommunications Symposium (WTS). IEEE, 2014. http://dx.doi.org/10.1109/wts.2014.6835001.
Pełny tekst źródłaSas, B., E. Bernal-Mor, K. Spaey, V. Pla, C. Blondia i J. Martinez-Bauset. "An analytical model to study the impact of time-varying cell capacity in LTE networks". W 2011 4th Joint IFIP Wireless and Mobile Networking Conference. IEEE, 2011. http://dx.doi.org/10.1109/wmnc.2011.6097234.
Pełny tekst źródłaKarimi, H. R., N. A. Duffie i S. Dashkovskiy. "Local capacity H∞ control for production networks of autonomous work systems with time-varying delays". W 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7074761.
Pełny tekst źródła