Artykuły w czasopismach na temat „TiS3”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „TiS3”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lai, Shengqiang, and Yongping Du. "Magnetic Behavior in TiS3 Nanoribbon." Materials 12, no. 21 (2019): 3501. http://dx.doi.org/10.3390/ma12213501.
Pełny tekst źródłaChang, H. S. W., and D. M. Schleich. "TiS2 and TiS3 thin films prepared by MOCVD." Journal of Solid State Chemistry 100, no. 1 (1992): 62–70. http://dx.doi.org/10.1016/0022-4596(92)90156-p.
Pełny tekst źródłaQin, Jing-Kai, Hai-Lin Sun, Pei-Yu Huang, Yang Li, Liang Zhen, and Cheng-Yan Xu. "Synaptic plasticity realized by selective oxidation of TiS3 nanosheet for neuromorphic devices." RSC Advances 13, no. 22 (2023): 14849–54. http://dx.doi.org/10.1039/d3ra00782k.
Pełny tekst źródłaGhasemi, Foad, Riccardo Frisenda, Eduardo Flores, et al. "Tunable Photodetectors via In Situ Thermal Conversion of TiS3 to TiO2." Nanomaterials 10, no. 4 (2020): 711. http://dx.doi.org/10.3390/nano10040711.
Pełny tekst źródłaYao, Huizhen, and Lai Liu. "Design and Optimize the Performance of Self-Powered Photodetector Based on PbS/TiS3 Heterostructure by SCAPS-1D." Nanomaterials 12, no. 3 (2022): 325. http://dx.doi.org/10.3390/nano12030325.
Pełny tekst źródłaZakharova, Olga V., Alexander A. Gusev, Dmitry S. Muratov, Alexey V. Shuklinov, Nataliya S. Strekalova, and Sergey M. Matveev. "Titanium Trisulfide Nanoribbons Affect the Downy Birch and Poplar × Aspen Hybrid in Plant Tissue Culture via the Emission of Hydrogen Sulfide." Forests 12, no. 6 (2021): 713. http://dx.doi.org/10.3390/f12060713.
Pełny tekst źródłaKlepp, Kurt O. "K2TiS3, ein neues Thiotitanat(IV) mit fünffach koordiniertem Titan / K2TiS3, A New Thiotitanate(IV) with Pentacoordinate Titanium." Zeitschrift für Naturforschung B 47, no. 2 (1992): 201–4. http://dx.doi.org/10.1515/znb-1992-0210.
Pełny tekst źródłaGorlova, I. G., S. A. Nikonov, S. G. Zybtsev, V. Ya Pokrovskii, and A. N. Titov. "Temperature variation of photoconductivity in the layered quasi one-dimensional compound TiS3: Semiconducting and unconventional behavior." Applied Physics Letters 120, no. 15 (2022): 153102. http://dx.doi.org/10.1063/5.0082716.
Pełny tekst źródłaZakharova, O., I. Vasyukova, D. S. Muratov, V. Korenkov, P. Baranchikov, and A. Gusev. "Concentration-dependent stimulating and toxic effects of ZrS3 and TiS3 nanoribbons on forest woody plants in tissue culture in vitro." IOP Conference Series: Earth and Environmental Science 875, no. 1 (2021): 012052. http://dx.doi.org/10.1088/1755-1315/875/1/012052.
Pełny tekst źródłaZakharova, Olga V., Valeria V. Belova, Peter A. Baranchikov, et al. "The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time." International Journal of Molecular Sciences 24, no. 9 (2023): 8299. http://dx.doi.org/10.3390/ijms24098299.
Pełny tekst źródłaJiménez-Arévalo, Nuria, Eduardo Flores, Alessio Giampietri, et al. "Borocarbonitride Layers on Titanium Dioxide Nanoribbons for Efficient Photoelectrocatalytic Water Splitting." Materials 14, no. 19 (2021): 5490. http://dx.doi.org/10.3390/ma14195490.
Pełny tekst źródłaRohaizad, Nasuha, Carmen C. Mayorga-Martinez, Zdeněk Sofer, Richard D. Webster, and Martin Pumera. "Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors." Biosensors and Bioelectronics 155 (May 2020): 112114. http://dx.doi.org/10.1016/j.bios.2020.112114.
Pełny tekst źródłaKang, Jun, and Lin-Wang Wang. "Robust band gap of TiS3 nanofilms." Physical Chemistry Chemical Physics 18, no. 22 (2016): 14805–9. http://dx.doi.org/10.1039/c6cp01125j.
Pełny tekst źródłaZhu, Hua, Hui Han, Dun Wu, et al. "Controlling hysteretic transitions in quasi-one-dimensional TiS3 microribbons." Applied Physics Letters 121, no. 1 (2022): 013503. http://dx.doi.org/10.1063/5.0094484.
Pełny tekst źródłaFerrer, I. J., M. D. Maciá, V. Carcelén, J. R. Ares, and C. Sánchez. "On the Photoelectrochemical Properties of TiS3 Films." Energy Procedia 22 (2012): 48–52. http://dx.doi.org/10.1016/j.egypro.2012.05.219.
Pełny tekst źródłaЯминский, И. В., А. И. Ахметова, Г. Б. Мешков та А. В. Оленин. "Сканирующая зондовая микроскопия 2D наноразмерных структур для энергонакопителей и катализаторов". NANOINDUSTRY Russia 12, № 2 (2019): 148–51. http://dx.doi.org/10.22184/1993-8578.2019.12.2.148.151.
Pełny tekst źródłaVarnum, B. C., R. W. Lim, D. A. Kujubu, et al. "Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary-response TIS genes in both proliferating and terminally differentiated myeloid cells." Molecular and Cellular Biology 9, no. 8 (1989): 3580–83. http://dx.doi.org/10.1128/mcb.9.8.3580-3583.1989.
Pełny tekst źródłaVarnum, B. C., R. W. Lim, D. A. Kujubu, et al. "Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary-response TIS genes in both proliferating and terminally differentiated myeloid cells." Molecular and Cellular Biology 9, no. 8 (1989): 3580–83. http://dx.doi.org/10.1128/mcb.9.8.3580.
Pełny tekst źródłaBondarenko, V. I., I. N. Trunkin, I. G. Gorlova, N. B. Bolotina, and A. L. Vasiliev. "Investigating the Vacancy Structure of TiS3 Single Crystals." Bulletin of the Russian Academy of Sciences: Physics 85, no. 8 (2021): 858–62. http://dx.doi.org/10.3103/s1062873821080050.
Pełny tekst źródłaLipatov, Alexey, Peter M. Wilson, Mikhail Shekhirev, Jacob D. Teeter, Ross Netusil, and Alexander Sinitskii. "Few-layered titanium trisulfide (TiS3) field-effect transistors." Nanoscale 7, no. 29 (2015): 12291–96. http://dx.doi.org/10.1039/c5nr01895a.
Pełny tekst źródłaPapadopoulos, Nikos, Riccardo Frisenda, Robert Biele, et al. "Large birefringence and linear dichroism in TiS3 nanosheets." Nanoscale 10, no. 26 (2018): 12424–29. http://dx.doi.org/10.1039/c8nr03616k.
Pełny tekst źródłaFerrer, I. J., J. R. Ares, J. M. Clamagirand, M. Barawi, and C. Sánchez. "Optical properties of titanium trisulphide (TiS3) thin films." Thin Solid Films 535 (May 2013): 398–401. http://dx.doi.org/10.1016/j.tsf.2012.10.033.
Pełny tekst źródłaBiele, Robert, Eduardo Flores, Jose Ramón Ares, et al. "Strain-induced band gap engineering in layered TiS3." Nano Research 11, no. 1 (2017): 225–32. http://dx.doi.org/10.1007/s12274-017-1622-3.
Pełny tekst źródłaCui, Qiannan, Alexey Lipatov, Jamie Samantha Wilt, et al. "Time-Resolved Measurements of Photocarrier Dynamics in TiS3 Nanoribbons." ACS Applied Materials & Interfaces 8, no. 28 (2016): 18334–38. http://dx.doi.org/10.1021/acsami.6b04092.
Pełny tekst źródłaGorlova, I. G., S. G. Zybtsev, V. Ya Pokrovskii, N. B. Bolotina, I. A. Verin, and A. N. Titov. "Nonlinear conductivity of quasi-one-dimensional layered compound TiS3." Physica B: Condensed Matter 407, no. 11 (2012): 1707–10. http://dx.doi.org/10.1016/j.physb.2012.01.012.
Pełny tekst źródłaIyikanat, F., H. Sahin, R. T. Senger, and F. M. Peeters. "Vacancy Formation and Oxidation Characteristics of Single Layer TiS3." Journal of Physical Chemistry C 119, no. 19 (2015): 10709–15. http://dx.doi.org/10.1021/acs.jpcc.5b01562.
Pełny tekst źródłaGuilmeau, Emmanuel, David Berthebaud, Patrick R. N. Misse, et al. "ZrSe3-Type Variant of TiS3: Structure and Thermoelectric Properties." Chemistry of Materials 26, no. 19 (2014): 5585–91. http://dx.doi.org/10.1021/cm502069n.
Pełny tekst źródłaTrunkin, I. N., I. G. Gorlova, N. B. Bolotina, V. I. Bondarenko, Y. M. Chesnokov, and A. L. Vasiliev. "Defect structure of TiS3 single crystals with different resistivity." Journal of Materials Science 56, no. 3 (2020): 2150–62. http://dx.doi.org/10.1007/s10853-020-05357-0.
Pełny tekst źródłaPatra, Abhinandan, Samadhan Kapse, Ranjit Thapa, Dattatray J. Late, and Chandra Sekhar Rout. "Quasi-one-dimensional van der Waals TiS3 nanosheets for energy storage applications: Theoretical predications and experimental validation." Applied Physics Letters 120, no. 10 (2022): 103102. http://dx.doi.org/10.1063/5.0080346.
Pełny tekst źródłaSysoev, Victor V., Andrey V. Lashkov, Alexey Lipatov, et al. "UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations." Sensors 22, no. 24 (2022): 9815. http://dx.doi.org/10.3390/s22249815.
Pełny tekst źródłaTalib, Mohammad, Nishant Tripathi, Samrah Manzoor, et al. "TiS3 Nanoribbons: A Novel Material for Ultra-Sensitive Photodetection across Extreme Temperature Ranges." Sensors 23, no. 10 (2023): 4948. http://dx.doi.org/10.3390/s23104948.
Pełny tekst źródłaAierken, Yierpan, Deniz Çakır, and Francois M. Peeters. "Strain enhancement of acoustic phonon limited mobility in monolayer TiS3." Physical Chemistry Chemical Physics 18, no. 21 (2016): 14434–41. http://dx.doi.org/10.1039/c6cp01809b.
Pełny tekst źródłaPapadopoulos, Nikos, Eduardo Flores, Kenji Watanabe, et al. "Multi-terminal electronic transport in boron nitride encapsulated TiS3 nanosheets." 2D Materials 7, no. 1 (2019): 015009. http://dx.doi.org/10.1088/2053-1583/ab4ef3.
Pełny tekst źródłaGorlova, I. G., and V. Ya Pokrovskii. "Collective conduction mechanism in a quasi-one-dimensional TiS3 compound." JETP Letters 90, no. 4 (2009): 295–98. http://dx.doi.org/10.1134/s0021364009160140.
Pełny tekst źródłaEl-Sayed, M. A., N. V. Doroshina, D. I. Yakubovsky, P. Mishra, and A. V. Syuy. "Laser Etching of Quasi-1D TiS3 Nanoribbons by Raman Spectrophotometer." Bulletin of the Russian Academy of Sciences: Physics 86, S1 (2022): S135—S140. http://dx.doi.org/10.3103/s1062873822700551.
Pełny tekst źródłaMolina-Mendoza, Aday J., Mariam Barawi, Robert Biele, et al. "Electronic Bandgap and Exciton Binding Energy of Layered Semiconductor TiS3." Advanced Electronic Materials 1, no. 9 (2015): 1500126. http://dx.doi.org/10.1002/aelm.201500126.
Pełny tekst źródłaMolina-Mendoza, Aday J., Mariam Barawi, Robert Biele, et al. "Electronic Bandgap and Exciton Binding Energy of Layered Semiconductor TiS3." Advanced Electronic Materials 1, no. 11 (2015): n/a. http://dx.doi.org/10.1002/aelm.201500332.
Pełny tekst źródłaHawkins, Casey G., and Luisa Whittaker-Brooks. "Controlling Sulfur Vacancies in TiS2–x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications." ACS Applied Nano Materials 1, no. 2 (2018): 851–59. http://dx.doi.org/10.1021/acsanm.7b00266.
Pełny tekst źródłaRocca, Riccardo, Mauro Francesco Sgroi, Bruno Camino, Maddalena D’Amore, and Anna Maria Ferrari. "Disordered Rock-Salt Type Li2TiS3 as Novel Cathode for LIBs: A Computational Point of View." Nanomaterials 12, no. 11 (2022): 1832. http://dx.doi.org/10.3390/nano12111832.
Pełny tekst źródłaГОРЛОВА, И. Г., А. В. ФРОЛОВ, А. П. ОРЛОВ, В. Я. ПОКРОВСКИЙ та ВУ ПАЙ ВОЕЙ. "ЭФФЕКТ ПОЛЯ В ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ПРОВОДИМОСТИ СЛОИСТОГО КВАЗИОДНОМЕРНОГО ПОЛУПРОВОДНИКА TIS3". ПИСЬМА В ЖУРНАЛ ЭКСПЕРИМЕНТАЛЬНОЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ 110, № 5-6(9) (2019): 400–406. http://dx.doi.org/10.1134/s0370274x19180097.
Pełny tekst źródłaSilva-Guillén, J. A., E. Canadell, F. Guinea, and R. Roldán. "Strain Tuning of the Anisotropy in the Optoelectronic Properties of TiS3." ACS Photonics 5, no. 8 (2018): 3231–37. http://dx.doi.org/10.1021/acsphotonics.8b00467.
Pełny tekst źródłaPawbake, Amit S., Joshua O. Island, Eduardo Flores, et al. "Temperature-Dependent Raman Spectroscopy of Titanium Trisulfide (TiS3) Nanoribbons and Nanosheets." ACS Applied Materials & Interfaces 7, no. 43 (2015): 24185–90. http://dx.doi.org/10.1021/acsami.5b07492.
Pełny tekst źródłaLipatov, Alexey, Michael J. Loes, Haidong Lu, et al. "Quasi-1D TiS3 Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy." ACS Nano 12, no. 12 (2018): 12713–20. http://dx.doi.org/10.1021/acsnano.8b07703.
Pełny tekst źródłaRandle, Michael, Alexey Lipatov, Avinash Kumar, et al. "Gate-Controlled Metal–Insulator Transition in TiS3 Nanowire Field-Effect Transistors." ACS Nano 13, no. 1 (2018): 803–11. http://dx.doi.org/10.1021/acsnano.8b08260.
Pełny tekst źródłaBolotina, N. B., I. G. Gorlova, I. A. Verin, A. N. Titov, and A. V. Arakcheeva. "Defect structure of TiS3 single crystals of the A-ZrSe3 type." Crystallography Reports 61, no. 6 (2016): 923–30. http://dx.doi.org/10.1134/s1063774516060055.
Pełny tekst źródłaGorlova, I. G., V. Ya Pokrovskii, S. G. Zybtsev, A. N. Titov, and V. N. Timofeev. "Features of the conductivity of the quasi-one-dimensional compound TiS3." Journal of Experimental and Theoretical Physics 111, no. 2 (2010): 298–303. http://dx.doi.org/10.1134/s1063776110080248.
Pełny tekst źródłaBarawi, M., E. Flores, I. J. Ferrer, J. R. Ares, and C. Sánchez. "Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light." Journal of Materials Chemistry A 3, no. 15 (2015): 7959–65. http://dx.doi.org/10.1039/c5ta00192g.
Pełny tekst źródłaSakuma, Tasuku, Shunsuke Nishino, Masanobu Miyata, and Mikio Koyano. "Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3." Journal of Electronic Materials 47, no. 6 (2018): 3177–83. http://dx.doi.org/10.1007/s11664-018-6086-z.
Pełny tekst źródłaLian, Zhen, Zeyu Jiang, Tianmeng Wang, et al. "Anisotropic band structure of TiS3 nanoribbon revealed by polarized photocurrent spectroscopy." Applied Physics Letters 117, no. 7 (2020): 073101. http://dx.doi.org/10.1063/5.0019828.
Pełny tekst źródłaLiu, Sijie, Wenbo Xiao, Mianzeng Zhong, et al. "Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3)." Nanotechnology 29, no. 18 (2018): 184002. http://dx.doi.org/10.1088/1361-6528/aaafa2.
Pełny tekst źródła