Artykuły w czasopismach na temat „Topological frustration”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Topological frustration”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
De Filippi, Federico Raffaele, Antonio Francesco Mello, Daniel Sacco Shaikh, Maura Sassetti, Niccolò Traverso Ziani, and Michele Grossi. "Few-Body Precursors of Topological Frustration." Symmetry 16, no. 8 (2024): 1078. http://dx.doi.org/10.3390/sym16081078.
Pełny tekst źródłaVillain-Guillot, S., R. Dandoloff, A. Saxena, and A. R. Bishop. "Topological solitons and geometrical frustration." Physical Review B 52, no. 9 (1995): 6712–22. http://dx.doi.org/10.1103/physrevb.52.6712.
Pełny tekst źródłaHayami, Satoru, and Yukitoshi Motome. "Topological spin crystals by itinerant frustration." Journal of Physics: Condensed Matter 33, no. 44 (2021): 443001. http://dx.doi.org/10.1088/1361-648x/ac1a30.
Pełny tekst źródłaMcLenaghan, I. R., and D. Sherrington. "A model for variable topological frustration." Journal of Physics C: Solid State Physics 20, no. 11 (1987): 1701–11. http://dx.doi.org/10.1088/0022-3719/20/11/013.
Pełny tekst źródłaLong, M. W. "Topological frustration can lead to superconductivity." Journal of Physics: Condensed Matter 3, no. 33 (1991): 6387–402. http://dx.doi.org/10.1088/0953-8984/3/33/016.
Pełny tekst źródłaYao, Zhenwei. "Topological vacancies in spherical crystals." Soft Matter 13, no. 35 (2017): 5905–10. http://dx.doi.org/10.1039/c7sm01599b.
Pełny tekst źródłaMishra, Shantanu, Doreen Beyer, Kristjan Eimre, et al. "Topological frustration induces unconventional magnetism in a nanographene." Nature Nanotechnology 15, no. 1 (2019): 22–28. http://dx.doi.org/10.1038/s41565-019-0577-9.
Pełny tekst źródłaStraley, Joseph P. "Effect of topological frustration on the freezing temperature." Physical Review B 34, no. 1 (1986): 405–9. http://dx.doi.org/10.1103/physrevb.34.405.
Pełny tekst źródłaGosavi, Shachi, Leslie L. Chavez, Patricia A. Jennings та José N. Onuchic. "Topological Frustration and the Folding of Interleukin-1β". Journal of Molecular Biology 357, № 3 (2006): 986–96. http://dx.doi.org/10.1016/j.jmb.2005.11.074.
Pełny tekst źródłaMorais Smith, C., T. Drose, R. Besseling, and P. Kes. "Plastic depinning in artificial vortex channels: Competition between bulk and boundary nucleation." Journal de Physique IV 12, no. 9 (2002): 179. http://dx.doi.org/10.1051/jp4:20020389.
Pełny tekst źródłaImaoka, Hitoshi, and Yasuhiro Kasai. "Topological Expression for Frustration in Antiferromagnetic Triangular Ising Model." Journal of the Physical Society of Japan 65, no. 3 (1996): 725–31. http://dx.doi.org/10.1143/jpsj.65.725.
Pełny tekst źródłaGAFVELIN, G. "Topological ?frustration? in multispanning E. coli inner membrane proteins." Cell 77, no. 3 (1994): 401–12. http://dx.doi.org/10.1016/0092-8674(94)90155-4.
Pełny tekst źródłaNorbiato, Federico, Flavio Seno, Antonio Trovato, and Marco Baiesi. "Folding Rate Optimization Promotes Frustrated Interactions in Entangled Protein Structures." International Journal of Molecular Sciences 21, no. 1 (2019): 213. http://dx.doi.org/10.3390/ijms21010213.
Pełny tekst źródłaMishra, Shantanu, Doreen Beyer, Kristjan Eimre, et al. "Publisher Correction: Topological frustration induces unconventional magnetism in a nanographene." Nature Nanotechnology 15, no. 1 (2019): 81. http://dx.doi.org/10.1038/s41565-019-0621-9.
Pełny tekst źródłaHafner, J., and M. Krajči´. "Localized modes and topological frustration in rational approximants to quasicrystals." Physical Review B 47, no. 2 (1993): 1084–87. http://dx.doi.org/10.1103/physrevb.47.1084.
Pełny tekst źródłados Santos, Roberto J. V., and M. L. Lyra. "Temperature-dependent “frustration”: A thermodynamic rather than a topological effect." Physica A: Statistical Mechanics and its Applications 182, no. 1-2 (1992): 133–44. http://dx.doi.org/10.1016/0378-4371(92)90234-h.
Pełny tekst źródłaZhang, Zhao. "Bicolor loop models and their long range entanglement." Quantum 8 (February 29, 2024): 1268. http://dx.doi.org/10.22331/q-2024-02-29-1268.
Pełny tekst źródłaKurumaji, Takashi, Taro Nakajima, Max Hirschberger, et al. "Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet." Science 365, no. 6456 (2019): 914–18. http://dx.doi.org/10.1126/science.aau0968.
Pełny tekst źródłaVyazovskaya, Alexandra Yu, Evgeniy K. Petrov, Yury M. Koroteev, et al. "Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators." Nanomaterials 13, no. 1 (2022): 38. http://dx.doi.org/10.3390/nano13010038.
Pełny tekst źródłaKarube, Kosuke, Jonathan S. White, Daisuke Morikawa, et al. "Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet." Science Advances 4, no. 9 (2018): eaar7043. http://dx.doi.org/10.1126/sciadv.aar7043.
Pełny tekst źródłaGao, Meng, Ping Li, Zhengding Su, and Yongqi Huang. "Topological frustration leading to backtracking in a coupled folding–binding process." Physical Chemistry Chemical Physics 24, no. 4 (2022): 2630–37. http://dx.doi.org/10.1039/d1cp04927e.
Pełny tekst źródłaKnezevic, M., and J. Vannimenus. "Topological frustration and quasicompact phase in a model of interacting polymers." Journal of Physics A: Mathematical and General 20, no. 15 (1987): L969—L973. http://dx.doi.org/10.1088/0305-4470/20/15/007.
Pełny tekst źródłaNorcross, Todd S., and Todd O. Yeates. "A Framework for Describing Topological Frustration in Models of Protein Folding." Journal of Molecular Biology 362, no. 3 (2006): 605–21. http://dx.doi.org/10.1016/j.jmb.2006.07.054.
Pełny tekst źródłaHills, Ronald D., and Charles L. Brooks. "Subdomain Competition, Cooperativity, and Topological Frustration in the Folding of CheY." Journal of Molecular Biology 382, no. 2 (2008): 485–95. http://dx.doi.org/10.1016/j.jmb.2008.07.007.
Pełny tekst źródłaNencka‐Ficek, H. "Topological closure as the necessary condition for frustration or phase transitions." Journal of Mathematical Physics 26, no. 7 (1985): 1597–99. http://dx.doi.org/10.1063/1.526924.
Pełny tekst źródłaCopenhagen, Katherine, Gema Malet-Engra, Weimiao Yu, Giorgio Scita, Nir Gov, and Ajay Gopinathan. "Frustration-induced phases in migrating cell clusters." Science Advances 4, no. 9 (2018): eaar8483. http://dx.doi.org/10.1126/sciadv.aar8483.
Pełny tekst źródłaFang, Fang, Richard Clawson, and Klee Irwin. "The Curled Up Dimension in Quasicrystals." Crystals 11, no. 10 (2021): 1238. http://dx.doi.org/10.3390/cryst11101238.
Pełny tekst źródłaOstoréro, J., A. Mauger, M. Guillot, A. Derory, M. Escorne, and A. Marchand. "Influence of topological frustration on the magnetic properties of the normal oxyspinelCdFe2O4." Physical Review B 40, no. 1 (1989): 391–95. http://dx.doi.org/10.1103/physrevb.40.391.
Pełny tekst źródłaLee, Ji Young, Li Duan, Tyler M. Iverson, and Ruxandra I. Dima. "Exploring the Role of Topological Frustration in Actin Refolding with Molecular Simulations." Journal of Physical Chemistry B 116, no. 5 (2012): 1677–86. http://dx.doi.org/10.1021/jp209340y.
Pełny tekst źródłaShenoy, Subodh R. "Topological disorder hierarchically trapped at frustration sites: Physical picture for a glass." Physical Review B 35, no. 16 (1987): 8652–56. http://dx.doi.org/10.1103/physrevb.35.8652.
Pełny tekst źródłaAraki, Takeaki, Marco Buscaglia, Tommaso Bellini, and Hajime Tanaka. "Memory and topological frustration in nematic liquid crystals confined in porous materials." Nature Materials 10, no. 4 (2011): 303–9. http://dx.doi.org/10.1038/nmat2982.
Pełny tekst źródłaVesperini, Arthur, Roberto Franzosi, and Marco Pettini. "The Glass Transition: A Topological Perspective." Entropy 27, no. 3 (2025): 258. https://doi.org/10.3390/e27030258.
Pełny tekst źródłaHall, Douglas M., and Gregory M. Grason. "How geometric frustration shapes twisted fibres, inside and out: competing morphologies of chiral filament assembly." Interface Focus 7, no. 4 (2017): 20160140. http://dx.doi.org/10.1098/rsfs.2016.0140.
Pełny tekst źródłaYan, Li, Yingfang Li, Sakander Hayat, et al. "On Degree-Based and Frustration Related Topological Indices of Single-Walled Titania Nanotubes." Journal of Computational and Theoretical Nanoscience 13, no. 11 (2016): 9027–32. http://dx.doi.org/10.1166/jctn.2016.6080.
Pełny tekst źródłaBachmann, Sven, Wojciech De Roeck, Brecht Donvil, and Martin Fraas. "Stability of invertible, frustration-free ground states against large perturbations." Quantum 6 (September 8, 2022): 793. http://dx.doi.org/10.22331/q-2022-09-08-793.
Pełny tekst źródłaGe, Yang, Jianlong Ji, Zhizhong Shen, et al. "First principles study of magnetism induced by topological frustration of bowtie-shaped graphene nanoflake." Carbon 127 (February 2018): 432–36. http://dx.doi.org/10.1016/j.carbon.2017.11.005.
Pełny tekst źródłaTranquada, John M. "Topological Doping and Superconductivity in Cuprates: An Experimental Perspective." Symmetry 13, no. 12 (2021): 2365. http://dx.doi.org/10.3390/sym13122365.
Pełny tekst źródłaHong, Sungyeon, Michael A. Klatt, Gerd Schröder-Turk, Nicolas François, and Mohammad Saadatfar. "Dynamical arrest of topological defects in 2D hyperuniform disk packings." EPJ Web of Conferences 249 (2021): 15002. http://dx.doi.org/10.1051/epjconf/202124915002.
Pełny tekst źródłaAzzoni, C. B., M. C. Mozzati, A. Paleari, V. Massarottib, D. Capsonib, and M. Binib. "Magnetic Order in Li-Mn Spinels." Zeitschrift für Naturforschung A 53, no. 8 (1998): 693–98. http://dx.doi.org/10.1515/zna-1998-0809.
Pełny tekst źródłaMaiellaro, Alfonso, Francesco Romeo, and Roberta Citro. "Effects of geometric frustration in Kitaev chains." European Physical Journal Plus 136, no. 6 (2021). http://dx.doi.org/10.1140/epjp/s13360-021-01592-9.
Pełny tekst źródłaZhang, Wenjuan, Zachariah Addison, and Nandini Trivedi. "Orbital frustration and topological flat bands." Physical Review B 104, no. 23 (2021). http://dx.doi.org/10.1103/physrevb.104.235202.
Pełny tekst źródłaSchmidt, Kai Phillip. "Persisting topological order via geometric frustration." Physical Review B 88, no. 3 (2013). http://dx.doi.org/10.1103/physrevb.88.035118.
Pełny tekst źródłaDrisko, Jasper, Thomas Marsh, and John Cumings. "Topological frustration of artificial spin ice." Nature Communications 8, no. 1 (2017). http://dx.doi.org/10.1038/ncomms14009.
Pełny tekst źródłaMarić, Vanja, Fabio Franchini, Domagoj Kuić, and Salvatore Marco Giampaolo. "Resilience of the topological phases to frustration." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-86009-4.
Pełny tekst źródłaMarić, Vanja, Salvatore Marco Giampaolo, and Fabio Franchini. "Quantum phase transition induced by topological frustration." Communications Physics 3, no. 1 (2020). http://dx.doi.org/10.1038/s42005-020-00486-z.
Pełny tekst źródłaMarić, Vanja, Gianpaolo Torre, Fabio Franchini, and Salvatore Marco Giampaolo. "Topological Frustration can modify the nature of a Quantum Phase Transition." SciPost Physics 12, no. 2 (2022). http://dx.doi.org/10.21468/scipostphys.12.2.075.
Pełny tekst źródłaTorre, Gianpaolo, Jovan Odavić, Pierre Fromholz, Salvatore Marco Giampaolo, and Fabio Franchini. "Long-range entanglement and topological excitations." SciPost Physics Core 7, no. 3 (2024). http://dx.doi.org/10.21468/scipostphyscore.7.3.050.
Pełny tekst źródłaMohanta, Narayan, and Elbio Dagotto. "Interfacial phase frustration stabilizes unconventional skyrmion crystals." npj Quantum Materials 7, no. 1 (2022). http://dx.doi.org/10.1038/s41535-022-00483-1.
Pełny tekst źródłaBullard, Zachary, Eduardo Costa Girão, Colin Daniels, Bobby G. Sumpter, and Vincent Meunier. "Quantifying energetics of topological frustration in carbon nanostructures." Physical Review B 89, no. 24 (2014). http://dx.doi.org/10.1103/physrevb.89.245425.
Pełny tekst źródłaHonma, Michinori, Koki Toda, Ryota Ito, and Toshiaki Nose. "Bistable hybrid aligned nematic liquid crystal cells with topological rubbing patterns." Journal of Applied Physics 137, no. 19 (2025). https://doi.org/10.1063/5.0257892.
Pełny tekst źródła