Gotowa bibliografia na temat „Training and Testing Dataset”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Training and Testing Dataset”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Training and Testing Dataset"
Lo, Jui-En, Eugene Yu-Chuan Kang, Yun-Nung Chen, et al. "Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy." Journal of Diabetes Research 2021 (December 28, 2021): 1–9. http://dx.doi.org/10.1155/2021/2751695.
Pełny tekst źródłaOyegoke, Temitayo O., Kehinde K. Akomolede, Adesola G. Aderounmu, and Emmanuel R. Adagunodo. "A Multi-Layer Perceptron Model for Classification of E-mail Fraud." European Journal of Information Technologies and Computer Science 1, no. 5 (2021): 16–22. http://dx.doi.org/10.24018/compute.2021.1.5.24.
Pełny tekst źródłaAn, Chansik, Yae Won Park, Sung Soo Ahn, Kyunghwa Han, Hwiyoung Kim, and Seung-Koo Lee. "Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results." PLOS ONE 16, no. 8 (2021): e0256152. http://dx.doi.org/10.1371/journal.pone.0256152.
Pełny tekst źródłaMabuni, D., and S. Aquter Babu. "High Accurate and a Variant of k-fold Cross Validation Technique for Predicting the Decision Tree Classifier Accuracy." International Journal of Innovative Technology and Exploring Engineering 10, no. 2 (2021): 105–10. http://dx.doi.org/10.35940/ijitee.c8403.0110321.
Pełny tekst źródłaD., Mabuni, and Aquter Babu S. "High Accurate and a Variant of k-fold Cross Validation Technique for Predicting the Decision Tree Classifier Accuracy." International Journal of Innovative Technology and Exploring Engineering (IJITEE) 10, no. 3 (2021): 105–10. https://doi.org/10.35940/ijitee.C8403.0110321.
Pełny tekst źródłaLee, Yongju, Sungjun Jang, Han Byeol Bae, Taejae Jeon, and Sangyoun Lee. "Multitask Learning Strategy with Pseudo-Labeling: Face Recognition, Facial Landmark Detection, and Head Pose Estimation." Sensors 24, no. 10 (2024): 3212. http://dx.doi.org/10.3390/s24103212.
Pełny tekst źródłaApeināns, Ilmars. "OPTIMAL SIZE OF AGRICULTURAL DATASET FOR YOLOV8 TRAINING." ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 2 (June 22, 2024): 38–42. http://dx.doi.org/10.17770/etr2024vol2.8041.
Pełny tekst źródłaMurugesan, S., R. S. Bhuvaneswaran, H. Khanna Nehemiah, S. Keerthana Sankari, and Y. Nancy Jane. "Feature Selection and Classification of Clinical Datasets Using Bioinspired Algorithms and Super Learner." Computational and Mathematical Methods in Medicine 2021 (May 17, 2021): 1–18. http://dx.doi.org/10.1155/2021/6662420.
Pełny tekst źródłaChua, Tuan-Hong, and Iftekhar Salam. "Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset." Symmetry 15, no. 6 (2023): 1251. http://dx.doi.org/10.3390/sym15061251.
Pełny tekst źródłaSheshkus, A., A. Chirvonaya, and V. L. Arlazarov. "Tiny CNN for feature point description for document analysis: approach and dataset." Computer Optics 46, no. 3 (2022): 429–35. http://dx.doi.org/10.18287/2412-6179-co-1016.
Pełny tekst źródłaRozprawy doktorskie na temat "Training and Testing Dataset"
Jonas, Mario Ricardo Edward. "High performance computing and algorithm development: application of dataset development to algorithm parameterization." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&.
Pełny tekst źródłaŠtarha, Dominik. "Meření podobnosti obrazů s pomocí hlubokého učení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377018.
Pełny tekst źródłaOppon, Ekow CruickShank. "Synergistic use of promoter prediction algorithms: a choice of small training dataset?" Thesis, University of the Western Cape, 2000. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8222_1185436339.
Pełny tekst źródłaTambay, Alain Alimou. "Testing Fuzzy Extractors for Face Biometrics: Generating Deep Datasets." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41429.
Pełny tekst źródłaBruin, Gerrit. "Limits of training and testing in horses." [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 1996. http://arno.unimaas.nl/show.cgi?fid=6700.
Pełny tekst źródłaWilkins, Luke. "Vision testing and visual training in sport." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6313/.
Pełny tekst źródłaWhittemore, Tom. "INTEGRATED TESTING AND TRAINING INSTRUMENTATION, A REALITY." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/609831.
Pełny tekst źródłaWissinger, John W. (John Weakley). "Distributed nonparametric training algorithms for hypothesis testing networks." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12006.
Pełny tekst źródłaV, Kusyk A. "PRELIMINARY PILOT TESTING." Thesis, ПОЛІТ.Сучасні проблеми науки.Гуманітарні науки:тези доповідей XVII Міжнародної науково-практичної конференції молодих учених і студентів:[y 2-x т.].Т.2(м.Київ,4-7 квітня 2017 р.)/[ред.кол.:В.М.Ісаєнко та ін.]; Національний авіаційний університет.-К.:НАУ,2017.-374 с, 2017. http://er.nau.edu.ua/handle/NAU/27741.
Pełny tekst źródłaDalen, Jan van. "Communication skills teaching, testing and learning /." Maastricht : Maastricht : Universitaire Pers Maastricht ; University Library, Maastricht University [Host], 2001. http://arno.unimaas.nl/show.cgi?fid=7619.
Pełny tekst źródłaKsiążki na temat "Training and Testing Dataset"
Morin, Jean-Benoit, and Pierre Samozino, eds. Biomechanics of Training and Testing. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-05633-3.
Pełny tekst źródłaWorld Health Organization. Maternal Health and Safe Motherhood Programme. Division of Family Health., ed. Midwifery training: Field testing version. WHO, 1994.
Znajdź pełny tekst źródłaWorld Health Organization. Maternal Health and Safe Motherhood Programme. Division of Family Health., ed. Midwifery training: Field testing version. WHO, 1994.
Znajdź pełny tekst źródłaWorld Health Organization. Maternal Health and Safe Motherhood Programme. Division of Family Health., ed. Midwifery training: Field testing version. WHO, 1994.
Znajdź pełny tekst źródłaMarks, Paul T. Ultrasonic testing classroom training book. American Society for Nondestructive Testing, 2005.
Znajdź pełny tekst źródłaStanley, Hoffman, ed. Supervisor's guide to training & testing. Transport Law Research, 1992.
Znajdź pełny tekst źródłaWorld Health Organization. Maternal Health and Safe Motherhood Programme. Division of Family Health., ed. Midwifery training: Field testing version. WHO, 1994.
Znajdź pełny tekst źródłaAssociation, International City/County Management, ed. Fire personnel testing and training. International City/County Management Association, 1992.
Znajdź pełny tekst źródłaWorld Health Organization. Maternal Health and Safe Motherhood Programme. Division of Family Health., ed. Midwifery training: Field testing version. WHO, 1994.
Znajdź pełny tekst źródłaAmerican Society for Nondestructive Testing., ed. Electromagnetic testing classroom training book. American Society for Nondestructive Testing, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Training and Testing Dataset"
Husni, Nyayu Latifah, Ade Silvia Handayani, Rossi Passarella, Akhmad Bastari, and Marlina Sylvia. "Datasets Training and Testing in Littering Activity Classification." In Atlantis Highlights in Engineering. Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-118-0_53.
Pełny tekst źródłaZhao, Wenning, Xin Yao, Bixin Wang, et al. "A Visual Detection Method for Train Couplers Based on YOLOv8 Model." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_44.
Pełny tekst źródłaAnwar, Suzan, Mardin Anwer, and Daniah Al-Nadawi. "DeepFake Technology for Breast Cancer Dataset Generation Using Autoencoders and Deep Neural Networks." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88220-3_1.
Pełny tekst źródłaMasood, Muhammad Arslan, Tianyu Cui, and Samuel Kaski. "Deep Bayesian Experimental Design for Drug Discovery." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72381-0_12.
Pełny tekst źródłaSpreeuwers, Luuk, Maikel Schils, Raymond Veldhuis, and Una Kelly. "Practical Evaluation of Face Morphing Attack Detection Methods." In Handbook of Digital Face Manipulation and Detection. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_16.
Pełny tekst źródłaLi, Xiaodong, Song Chai, Liwei Wang, and Hua Wang. "A Configurable and Automated Testing Framework for Hardware Trojan Detection in FPGAs." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2409-6_31.
Pełny tekst źródłaRizvi, Syed Zeeshan, Muhammad Umar Farooq, and Rana Hammad Raza. "Performance Comparison of Deep Residual Networks-Based Super Resolution Algorithms Using Thermal Images: Case Study of Crowd Counting." In Digital Interaction and Machine Intelligence. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11432-8_7.
Pełny tekst źródłaBrito-Pacheco, Daniel, Riad Ibadulla, Ximena Fernández, Panos Giannopoulos, and Constantino Carlos Reyes-Aldasoro. "Persistent Homology and Gabor Features Reveal Inconsistencies Between Widely Used Colorectal Cancer Training and Testing Datasets." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-98688-8_7.
Pełny tekst źródłaRichards, Bryn, and Nwabueze Emekwuru. "Using Machine Learning to Predict Synthetic Fuel Spray Penetration from Limited Experimental Data Without Computational Fluid Dynamics." In Springer Proceedings in Energy. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_6.
Pełny tekst źródłaMol, Frank N., Luuk van der Hoek, Baoqiang Ma, et al. "MRI-Based Head and Neck Tumor Segmentation Using nnU-Net with 15-Fold Cross-Validation Ensemble." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-83274-1_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Training and Testing Dataset"
Shahhoseyni, Shabnam, Arijit Chakraborty, Mohammad Reza Boskabadi, Venkat Venkatasubramanian, and Seyed Soheil Mansouri. "Hybrid machine-learning for dynamic plant-wide biomanufacturing." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.174465.
Pełny tekst źródłaKubicka, Matej, Arben Cela, Philippe Moulin, Hugues Mounier, and S. I. Niculescu. "Dataset for testing and training of map-matching algorithms." In 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015. http://dx.doi.org/10.1109/ivs.2015.7225829.
Pełny tekst źródłaSaeed, Khalida A., and Wasfi T. Kahwachi. "Standard Training Dataset vs. Different Testing Dataset to Compare Deep Learning Architectures Models in Diagnosing COVID-19." In 2023 9th International Conference on Smart Structures and Systems (ICSSS). IEEE, 2023. http://dx.doi.org/10.1109/icsss58085.2023.10407120.
Pełny tekst źródłaGao, Xuanqi, Juan Zhai, Shiqing Ma, Chao Shen, Yufei Chen, and Shiwei Wang. "CILIATE: Towards Fairer Class-Based Incremental Learning by Dataset and Training Refinement." In ISSTA '23: 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2023. http://dx.doi.org/10.1145/3597926.3598071.
Pełny tekst źródłaRose, Ralph L., Naho Orita, Ayaka Sugawara, and Qiao Wang. "Evaluation Dataset of Multiple-Choice Cloze Items for Vocabulary Training and Testing." In UbiComp/ISWC '22: The 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2022. http://dx.doi.org/10.1145/3544793.3560378.
Pełny tekst źródłaRyan, Keyanna, Bassam Bahhur, Mark Jeiran, and Bryan I. Vogel. "Evaluation of augmented training datasets." In Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXXII, edited by Gerald C. Holst and David P. Haefner. SPIE, 2021. http://dx.doi.org/10.1117/12.2587177.
Pełny tekst źródłaRen, G., O. Talabi, V. Kumar, et al. "Trapped and Movable CO2 in Geologic Carbon Storage: Deep-Learning Forecasting and Generalization Study." In International Petroleum Technology Conference. IPTC, 2025. https://doi.org/10.2523/iptc-24804-ms.
Pełny tekst źródłaLew, C. L., C. MacBeth, A. ElSheikh, M. S. Jaya, and M. I. Ahmad Fuad. "Improving Lateral Continuity in Direct Petrophysical Inversion from Seismic Using Deep Learning." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222530-ms.
Pełny tekst źródłaLarocque-Villiers, Justin, and Patrick Dumond. "Towards Generalization of Intelligent Fault Detection for Roller Element Bearings via Distinct Dataset Transfer Learning." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-67773.
Pełny tekst źródłaLew, C. L., M. I. Ahmad Fuad, M. S. Jaya, A. Trianto, and C. MacBeth. "Estimating Petrophysical Properties Directly from Seismic: A Deep Learning Application to Carbonate Field for CO2 Storage Potential." In SPE Annual Technical Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/220847-ms.
Pełny tekst źródłaRaporty organizacyjne na temat "Training and Testing Dataset"
Rosenblat, Sruly, Tim O'Reilly, and Ilan Strauss. Beyond Public Access in LLM Pre-Training Data: Non-public book content in OpenAI’s Models. AI Disclosures Project, Social Science Research Council, 2025. https://doi.org/10.35650/aidp.4111.d.2025.
Pełny tekst źródłaJohra, Hicham, Martin Veit, Mathias Østergaard Poulsen, et al. Training and testing labelled image and video datasets of human faces for different indoor visual comfort and glare visual discomfort situations. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau542153983.
Pełny tekst źródłaSayre, Amanda M., and Jarrod R. Olson. Development of a SPARK Training Dataset. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1228354.
Pełny tekst źródłaBusso, Matías, Julian P. Cristia, and Julián Messina. SkillsBank Methodology Note: Adult Training Methodology. Inter-American Development Bank, 2022. http://dx.doi.org/10.18235/0004472.
Pełny tekst źródłaYoung, Scott W. H. Improving Library User Experience with A/B Testing: Principles and Process [dataset]. Montana State University ScholarWorks, 2014. http://dx.doi.org/10.15788/m2rp42.
Pełny tekst źródłaWiederhold, Mark D. Physiological Monitoring During Simulation Training and Testing. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada436158.
Pełny tekst źródłaGarvin, John R., and Peter H. Christensen. USMC Information Assurance Operational Testing and Training Strategy. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada399993.
Pełny tekst źródłaWestervelt, James, and Bruce MacAllister. Quick Prediction of Future Training/Testing Opportunities Using mLEAM. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada477943.
Pełny tekst źródłagahl, john. Electromagnetic Radioisotope Separator for Methods Development, Testing, and Training. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2441142.
Pełny tekst źródłaLamontagne, Colette, Janet Mahannah, Kristin Jasinkiewicz, and Kimberly Hogrelius. Strategy to Minimize Energetics Contamination at Military Testing/Training Ranges. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada438602.
Pełny tekst źródła