Artykuły w czasopismach na temat „Transhumeral prosthesis control”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transhumeral prosthesis control”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
de Backer-Bes, Femke, Maaike Lange, Michael Brouwers, and Iris van Wijk. "De Hoogstraat Xperience Prosthesis Transhumeral: An Innovative Test Prosthesis." JPO Journal of Prosthetics and Orthotics 36, no. 3 (2024): 193–97. http://dx.doi.org/10.1097/jpo.0000000000000510.
Pełny tekst źródłaTereshenko, Vlad, Riccardo Giorgino, Kyle R. Eberlin, et al. "Emerging Value of Osseointegration for Intuitive Prosthetic Control after Transhumeral Amputations: A Systematic Review." Plastic and Reconstructive Surgery - Global Open 12, no. 5 (2024): e5850. http://dx.doi.org/10.1097/gox.0000000000005850.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, et al. "fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees." Sensors 22, no. 3 (2022): 726. http://dx.doi.org/10.3390/s22030726.
Pełny tekst źródłaMolina Arias, Ludwin, Marek Iwaniec, Paulina Pirowska, Magdalena Smoleń, and Piotr Augustyniak. "Head and Voice-Controlled Human-Machine Interface System for Transhumeral Prosthesis." Electronics 12, no. 23 (2023): 4770. http://dx.doi.org/10.3390/electronics12234770.
Pełny tekst źródłaAlshammary, Nasser A., Daniel A. Bennett, and Michael Goldfarb. "Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis." IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, no. 2 (2018): 468–76. http://dx.doi.org/10.1109/tnsre.2017.2781719.
Pełny tekst źródłaAhmed, Muhammad Hannan, Jiazheng Chai, Shingo Shimoda, and Mitsuhiro Hayashibe. "Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion." Sensors 23, no. 9 (2023): 4188. http://dx.doi.org/10.3390/s23094188.
Pełny tekst źródłaOʼShaughnessy, Kristina D., Gregory A. Dumanian, Robert D. Lipschutz, Laura A. Miller, Kathy Stubblefield, and Todd A. Kuiken. "Targeted Reinnervation to Improve Prosthesis Control in Transhumeral Amputees." Journal of Bone & Joint Surgery 90, no. 2 (2008): 393–400. http://dx.doi.org/10.2106/jbjs.g.00268.
Pełny tekst źródłaNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon, and Guanglin Li. "A Self-Learning and Adaptive Control Scheme for Phantom Prosthesis Control Using Combined Neuromuscular and Brain-Wave Bio-Signals." Engineering Proceedings 2, no. 1 (2020): 59. http://dx.doi.org/10.3390/ecsa-7-08169.
Pełny tekst źródłaNsugbe, Ejay, Carol Phillips, Mike Fraser, and Jess McIntosh. "Gesture recognition for transhumeral prosthesis control using EMG and NIR." IET Cyber-Systems and Robotics 2, no. 3 (2020): 122–31. http://dx.doi.org/10.1049/iet-csr.2020.0008.
Pełny tekst źródłaHebert, Jacqueline S., K. Ming Chan, and Michael R. Dawson. "Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases." Prosthetics and Orthotics International 40, no. 3 (2016): 303–10. http://dx.doi.org/10.1177/0309364616633919.
Pełny tekst źródłaCifuentes-Cuadros, Alonso A., Enzo Romero, Sebastian Caballa, Daniela Vega-Centeno, and Dante A. Elias. "The LIBRA NeuroLimb: Hybrid Real-Time Control and Mechatronic Design for Affordable Prosthetics in Developing Regions." Sensors 24, no. 1 (2023): 70. http://dx.doi.org/10.3390/s24010070.
Pełny tekst źródłaFite, Kevin B., Thomas J. Withrow, Xiangrong Shen, Keith W. Wait, Jason E. Mitchell, and Michael Goldfarb. "A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees." IEEE Transactions on Robotics 24, no. 1 (2008): 159–69. http://dx.doi.org/10.1109/tro.2007.914845.
Pełny tekst źródłaLenzi, Tommaso, James Lipsey, and Jonathon W. Sensinger. "The RIC Arm—A Small Anthropomorphic Transhumeral Prosthesis." IEEE/ASME Transactions on Mechatronics 21, no. 6 (2016): 2660–71. http://dx.doi.org/10.1109/tmech.2016.2596104.
Pełny tekst źródłaSimon, Ann M., Kristi L. Turner, Laura A. Miller, et al. "Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation." PLOS ONE 18, no. 1 (2023): e0280210. http://dx.doi.org/10.1371/journal.pone.0280210.
Pełny tekst źródłaMaas, Bart, Zack A. Wright, Blair A. Lock, Corry K. van der Sluis, and Raoul M. Bongers. "Using Serious Games to Measure Upper-Limb Myoelectric Pattern Recognition Prosthesis Control Performance in an At-Home Environment." JPO Journal of Prosthetics and Orthotics 36, no. 3 (2024): 153–60. http://dx.doi.org/10.1097/jpo.0000000000000503.
Pełny tekst źródłaHernández-Cerero, Ramsés, Juan Alejandro Flores-Campos, José Juan Mojica-Martínez, Adolfo Angel Casarez-Duran, Luis Angel Guerrero-Hernández, and Christopher René Torres-SanMiguel. "Mechanical Design, Control, and Laboratory Test of a Two-Degrees-of-Freedom Elbow Prosthesis." Bioengineering 12, no. 7 (2025): 695. https://doi.org/10.3390/bioengineering12070695.
Pełny tekst źródłaGu, Yikun, Dapeng Yang, Luke Osborn, Daniel Candrea, Hong Liu, and Nitish Thakor. "An adaptive socket with auto-adjusting air bladders for interfacing transhumeral prosthesis: A pilot study." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, no. 8 (2019): 812–22. http://dx.doi.org/10.1177/0954411919853960.
Pełny tekst źródłaSegura, Diego, Enzo Romero, Victoria E. Abarca, and Dante A. Elias. "Upper Limb Prostheses by the Level of Amputation: A Systematic Review." Prosthesis 6, no. 2 (2024): 277–300. http://dx.doi.org/10.3390/prosthesis6020022.
Pełny tekst źródłaWang, Bingbin, Levi Hargrove, Xinqi Bao, and Ernest N. Kamavuako. "Surface EMG Statistical and Performance Analysis of Targeted-Muscle-Reinnervated (TMR) Transhumeral Prosthesis Users in Home and Laboratory Settings." Sensors 22, no. 24 (2022): 9849. http://dx.doi.org/10.3390/s22249849.
Pełny tekst źródłaAhmed, Muhammad Hannan, Kyo Kutsuzawa, and Mitsuhiro Hayashibe. "Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning." Biomimetics 8, no. 4 (2023): 367. http://dx.doi.org/10.3390/biomimetics8040367.
Pełny tekst źródłaNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon, and Guanglin Li. "Phantom motion intent decoding for transhumeral prosthesis control with fused neuromuscular and brain wave signals." IET Cyber-Systems and Robotics 3, no. 1 (2021): 77–88. http://dx.doi.org/10.1049/csy2.12009.
Pełny tekst źródłaSchlüter, Christoph, Washington Caraguay, and Doris Cáliz Ramos. "Development of a low-cost EMG-data acquisition armband to control an above-elbow prosthesis." Journal of Physics: Conference Series 2232, no. 1 (2022): 012019. http://dx.doi.org/10.1088/1742-6596/2232/1/012019.
Pełny tekst źródłaSchofield, Jonathon S., Katherine R. Schoepp, Michael Stobbe, Paul D. Marasco, and Jacqueline S. Hebert. "Fabrication and application of an adjustable myoelectric transhumeral prosthetic socket." Prosthetics and Orthotics International 43, no. 5 (2019): 564–67. http://dx.doi.org/10.1177/0309364619836353.
Pełny tekst źródłaLi, Sujiao, Wanjing Sun, Wei Li, and Hongliu Yu. "Enhancing Robustness of Surface Electromyography Pattern Recognition at Different Arm Positions for Transhumeral Amputees Using Deep Adversarial Inception Domain Adaptation." Applied Sciences 14, no. 8 (2024): 3417. http://dx.doi.org/10.3390/app14083417.
Pełny tekst źródłaPulliam, Christopher L., Joris M. Lambrecht, and Robert F. Kirsch. "Electromyogram-based neural network control of transhumeral prostheses." Journal of Rehabilitation Research and Development 48, no. 6 (2011): 739. http://dx.doi.org/10.1682/jrrd.2010.12.0237.
Pełny tekst źródłaHallworth, Ben W., James A. Austin, Heather E. Williams, Mayank Rehani, Ahmed W. Shehata, and Jacqueline S. Hebert. "A Modular Adjustable Transhumeral Prosthetic Socket for Evaluating Myoelectric Control." IEEE Journal of Translational Engineering in Health and Medicine 8 (2020): 1–10. http://dx.doi.org/10.1109/jtehm.2020.3006416.
Pełny tekst źródłaMerad, M., E. de Montalivet, M. Legrand, et al. "Assessment of an Automatic Prosthetic Elbow Control Strategy Using Residual Limb Motion for Transhumeral Amputated Individuals With Socket or Osseointegrated Prostheses." IEEE Transactions on Medical Robotics and Bionics 2, no. 1 (2020): 38–49. http://dx.doi.org/10.1109/tmrb.2020.2970065.
Pełny tekst źródłaKALIKI, RAHUL R., RAHMAN DAVOODI, and GERALD E. LOEB. "PREDICTION OF ELBOW TRAJECTORY FROM SHOULDER ANGLES USING NEURAL NETWORKS." International Journal of Computational Intelligence and Applications 07, no. 03 (2008): 333–49. http://dx.doi.org/10.1142/s1469026808002296.
Pełny tekst źródłaJarrasse, N., D. Müller, E. De Montalivet, et al. "A simple movement based control approach to ease the control of a myoelectric elbow prosthetics in transhumeral amputees." Annals of Physical and Rehabilitation Medicine 61 (July 2018): e471. http://dx.doi.org/10.1016/j.rehab.2018.05.1100.
Pełny tekst źródłaCooke, Deirdre M., Matthew Ames, and Saul Geffen. "Life without limbs: Technology to the rescue." Prosthetics and Orthotics International 40, no. 4 (2015): 517–21. http://dx.doi.org/10.1177/0309364615579316.
Pełny tekst źródłaLontis, Eugen Romulus, Ken Yoshida, and Winnie Jensen. "Non-Invasive Sensory Input Results in Changes in Non-Painful and Painful Sensations in Two Upper-Limb Amputees." Prosthesis 6, no. 1 (2023): 1–23. http://dx.doi.org/10.3390/prosthesis6010001.
Pełny tekst źródłaWATANABE, Takahiro, Kengo OHNISHI, and Keiji IMADO. "B211 Fundamental experiment for mechanics-based adjustment of the Bowden cable control system for body-powered transhumeral prostheses." Proceedings of the JSME Conference on Frontiers in Bioengineering 2007.18 (2007): 133–34. http://dx.doi.org/10.1299/jsmebiofro.2007.18.133.
Pełny tekst źródłaWebster, Joseph, Jeffrey Heckman, Matthew Borgia, Jemy Delikat, and Linda Resnik. "Outcomes in transhumeral upper limb amputation with osseointegration and targeted muscle reinnervation: A preliminary observational cohort study." PM&R, May 29, 2025. https://doi.org/10.1002/pmrj.13407.
Pełny tekst źródłaEarley, Eric J., Anton Berneving, Jan Zbinden, and Max Ortiz-Catalan. "Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition." Frontiers in Human Neuroscience 16 (October 19, 2022). http://dx.doi.org/10.3389/fnhum.2022.1030207.
Pełny tekst źródłaZbinden, Jan, Paolo Sassu, Enzo Mastinu, et al. "Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes." Science Translational Medicine 15, no. 704 (2023). http://dx.doi.org/10.1126/scitranslmed.abq3665.
Pełny tekst źródłaRazak, N. A. Abd, H. Gholizadeh, N. Hasnan, N. A. Abu Osman, S. S. Mohd Fadzil, and N. A. Hashim. "An anthropomorphic transhumeral prosthesis socket developed based on an oscillometric pump and controlled by force-sensitive resistor pressure signals." Biomedical Engineering / Biomedizinische Technik 62, no. 1 (2017). http://dx.doi.org/10.1515/bmt-2015-0106.
Pełny tekst źródła"Towards Control of a Transhumeral Prosthesis with EEG Signals." Bioengineering 5, no. 2 (2018): 26. http://dx.doi.org/10.3390/bioengineering5020026.
Pełny tekst źródłaToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Jensen, and Sami Haddadin. "A transhumeral prosthesis with an artificial neuromuscular system: Sim2real-guided design, modeling, and control." International Journal of Robotics Research, February 20, 2024. http://dx.doi.org/10.1177/02783649231218719.
Pełny tekst źródłaSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq, and Umar Shahbaz Khan. "EMG Based Control of Transhumeral Prosthesis Using Machine Learning Algorithms." International Journal of Control, Automation and Systems, July 27, 2021. http://dx.doi.org/10.1007/s12555-019-1058-5.
Pełny tekst źródłaSaid, Hakim, Todd Kuiken, Robert Lipzchutz, Laura Miller, and Gregory Dumanian. "Nerve Transfers in Transhumeral Amputation: Creating Myoneurosomes for Improved Myoelectric Prosthesis Control." Journal of Reconstructive Microsurgery 21, no. 07 (2005). http://dx.doi.org/10.1055/s-2005-918994.
Pełny tekst źródłaChoi, Benjamin J., and Ji Liu. "A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system." Journal of Neural Engineering, January 24, 2025. https://doi.org/10.1088/1741-2552/adae35.
Pełny tekst źródłaMastinu, Enzo, Leonard F. Engels, Francesco Clemente, et al. "Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses." Scientific Reports 10, no. 1 (2020). http://dx.doi.org/10.1038/s41598-020-67985-5.
Pełny tekst źródłaSegas, Effie, Sébastien Mick, Vincent Leconte, et al. "Intuitive movement-based prosthesis control enables arm amputees to reach naturally in virtual reality." eLife 12 (October 17, 2023). http://dx.doi.org/10.7554/elife.87317.3.
Pełny tekst źródłaJarrassé, Nathanaël, Etienne de Montalivet, Florian Richer, et al. "Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study." Frontiers in Bioengineering and Biotechnology 6 (November 29, 2018). http://dx.doi.org/10.3389/fbioe.2018.00164.
Pełny tekst źródłaJasti, Harshitha. "Utilizing EEG Signal Data and Motion to Aid in Prosthetic Hand Motion." Journal of Student Research 12, no. 4 (2023). http://dx.doi.org/10.47611/jsrhs.v12i4.5883.
Pełny tekst źródłaToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Rose Jensen, and Sami Haddadin. "A Wearable Force-Sensitive and Body-Aware Exoprosthesis for a Transhumeral Prosthesis Socket." IEEE Transactions on Robotics, 2023, 1–21. http://dx.doi.org/10.1109/tro.2023.3251947.
Pełny tekst źródłaChateaux, Manon, Olivier Rossel, Fabien Vérité, et al. "New insights into muscle activity associated with phantom hand movements in transhumeral amputees." Frontiers in Human Neuroscience 18 (August 30, 2024). http://dx.doi.org/10.3389/fnhum.2024.1443833.
Pełny tekst źródłaCalvo Sanz, Jordi, Mª Angeles Diaz Vela, Alberto Jardón Huete, et al. "Training in the Use of Myoelectric Prostheses Through the Combined Application of Immersive Virtual Reality, Cross-education, and Mirror Therapy." JPO Journal of Prosthetics and Orthotics, November 7, 2024. http://dx.doi.org/10.1097/jpo.0000000000000543.
Pełny tekst źródłaChi, Albert. "Improved Control of a Virtual Prosthesis Using a Pattern Recognition Algorithm and an Interactive Training Environment in a Transhumeral Amputee Demonstrating Local Reinnervation." Biomedical Journal of Scientific & Technical Research 18, no. 3 (2019). http://dx.doi.org/10.26717/bjstr.2019.18.003143.
Pełny tekst źródłaBrauckmann, Vesta, Jorge Mayor, Luisa Ernst, and Jennifer Ernst. "How a robotic visualization system can facilitate targeted muscle reinnervation." Journal of Reconstructive Microsurgery Open, July 21, 2023. http://dx.doi.org/10.1055/a-2134-8633.
Pełny tekst źródła