Artykuły w czasopismach na temat „Transistor scaling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transistor scaling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ahmed Mohammede, Arsen, Zaidoon Khalaf Mahmood, and Hüseyin Demirel. "Study of finfet transistor: critical and literature review in finfet transistor in the active filter." 3C TIC: Cuadernos de desarrollo aplicados a las TIC 12, no. 1 (2023): 65–81. http://dx.doi.org/10.17993/3ctic.2023.121.65-81.
Pełny tekst źródłaEndo, Kazuhiko. "(Invited) Technology Scaling from Bulk to Fin and Nano-Sheet Transistors." ECS Meeting Abstracts MA2023-02, no. 30 (2023): 1519. http://dx.doi.org/10.1149/ma2023-02301519mtgabs.
Pełny tekst źródłaDatta, Suman, Wriddhi Chakraborty, and Marko Radosavljevic. "Toward attojoule switching energy in logic transistors." Science 378, no. 6621 (2022): 733–40. http://dx.doi.org/10.1126/science.ade7656.
Pełny tekst źródłaSARKOZY, S., X. MEI, W. YOSHIDA, et al. "AMPLIFIER GAIN PER STAGE UP TO 0.5 THz USING 35 NM InP HEMT TRANSISTORS." International Journal of High Speed Electronics and Systems 20, no. 03 (2011): 399–404. http://dx.doi.org/10.1142/s0129156411006684.
Pełny tekst źródłaReid, Dave, Campbell Millar, Scott Roy, et al. "Enabling cutting-edge semiconductor simulation through grid technology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1897 (2009): 2573–84. http://dx.doi.org/10.1098/rsta.2009.0031.
Pełny tekst źródłaFazio, Al. "Flash Memory Scaling." MRS Bulletin 29, no. 11 (2004): 814–17. http://dx.doi.org/10.1557/mrs2004.233.
Pełny tekst źródłaMoroz, Victor, Soren Smidstrup, Munkang Choi, Ronald Gull, and Shela Aboud. "(Invited) Material Engineering for the GAA and Post-GAA Transistors and Interconnects." ECS Meeting Abstracts MA2024-01, no. 30 (2024): 1499. http://dx.doi.org/10.1149/ma2024-01301499mtgabs.
Pełny tekst źródłaAngelov, George V., Dimitar N. Nikolov, and Marin H. Hristov. "Technology and Modeling of Nonclassical Transistor Devices." Journal of Electrical and Computer Engineering 2019 (November 3, 2019): 1–18. http://dx.doi.org/10.1155/2019/4792461.
Pełny tekst źródłaIeong, Meikei, Vijay Narayanan, Dinkar Singh, Anna Topol, Victor Chan, and Zhibin Ren. "Transistor scaling with novel materials." Materials Today 9, no. 6 (2006): 26–31. http://dx.doi.org/10.1016/s1369-7021(06)71540-1.
Pełny tekst źródłaCastañer, Luis M., Ramon Alcubilla, and Anna Benavent. "Bipolar transistor vertical scaling framework." Solid-State Electronics 38, no. 7 (1995): 1367–71. http://dx.doi.org/10.1016/0038-1101(94)00254-d.
Pełny tekst źródłaJacob, Ajey P., Ruilong Xie, Min Gyu Sung, Lars Liebmann, Rinus T. P. Lee, and Bill Taylor. "Scaling Challenges for Advanced CMOS Devices." International Journal of High Speed Electronics and Systems 26, no. 01n02 (2017): 1740001. http://dx.doi.org/10.1142/s0129156417400018.
Pełny tekst źródłaAlizadeh Arashloo, Banafsheh. "Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors." International Journal of Engineering Technologies IJET 9, no. 4 (2025): 123–27. https://doi.org/10.19072/ijet.1618541.
Pełny tekst źródłaChen, Zhuo, Huilong Zhu, Guilei Wang, et al. "High-Quality Recrystallization of Amorphous Silicon on Si (100) Induced via Laser Annealing at the Nanoscale." Nanomaterials 13, no. 12 (2023): 1867. http://dx.doi.org/10.3390/nano13121867.
Pełny tekst źródłaPark, Junhyeong, Yuseong Jang, Jinkyu Lee, and Soo-Yeon Lee. "48‐3: In‐Ga‐Zn‐O Synaptic Transistor with 1 µm Channel Length for Neuromorphic Computing." SID Symposium Digest of Technical Papers 54, no. 1 (2023): 699–702. http://dx.doi.org/10.1002/sdtp.16655.
Pełny tekst źródłaUrteaga, M., S. Krishnan, D. Scott, et al. "Submicron InP-based HBTs for Ultra-high Frequency Amplifiers." International Journal of High Speed Electronics and Systems 13, no. 02 (2003): 457–95. http://dx.doi.org/10.1142/s0129156403001806.
Pełny tekst źródłaJohn Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Pełny tekst źródłaChen, Wenbin. "Characterization of new materials for capacitor formation in integrated circuit technology." Boolean: Snapshots of Doctoral Research at University College Cork, no. 2010 (January 1, 2010): 26–31. http://dx.doi.org/10.33178/boolean.2010.7.
Pełny tekst źródłaCao, Qing, Shu-Jen Han, Jerry Tersoff, et al. "End-bonded contacts for carbon nanotube transistors with low, size-independent resistance." Science 350, no. 6256 (2015): 68–72. http://dx.doi.org/10.1126/science.aac8006.
Pełny tekst źródłaKumar, MAnil, YNSSai Kiran, U. Jagadeesh, B. Balaram, and M. Durga Prakash. "SCALING CHALLENGES FOR ADVANCED TRANSISTOR DESIGN." International Journal of Advanced Research 5, no. 5 (2017): 340–45. http://dx.doi.org/10.21474/ijar01/4118.
Pełny tekst źródłaFitsilis, Michael, Yacoub Mustafa, and Rainer Waser. "Scaling the Ferroelectric Field Effect Transistor." Integrated Ferroelectrics 70, no. 1 (2005): 29–44. http://dx.doi.org/10.1080/10584580590926657.
Pełny tekst źródłaFLYNN, MICHAEL P., SUNGHYUN PARK, and CHUN C. LEE. "ACHIEVING ANALOG ACCURACY IN NANOMETER CMOS." International Journal of High Speed Electronics and Systems 15, no. 02 (2005): 255–75. http://dx.doi.org/10.1142/s0129156405003193.
Pełny tekst źródłaKumar, Abneesh, Atal Rai, R. K. Saxena, and Suresh Patel. "To Study Effect on Current Due to Channel Length Variation." International Journal of Advance Research and Innovation 2, no. 4 (2014): 30–32. http://dx.doi.org/10.51976/ijari.241406.
Pełny tekst źródłaJiang, Yuchen. "Introduction and commercial prospect of GAAFET." Applied and Computational Engineering 30, no. 1 (2024): 224–29. http://dx.doi.org/10.54254/2755-2721/30/20230102.
Pełny tekst źródłaMishra, Brijendra, Vivek Singh Kushwah, and Rishi Sharma. "MODELING OF HYBRID MOS FOR THE IMPLEMENTATION OF SWITCHED CAPACITOR FILTER USING SINGLE ELECTRON TRANSISTOR." International Journal of Engineering Technologies and Management Research 5, no. 2 (2020): 294–300. http://dx.doi.org/10.29121/ijetmr.v5.i2.2018.659.
Pełny tekst źródłaKumari, Nibha, and Prof Vandana Niranjan. "Low-Power 6T SRAM Cell using 22nm CMOS Technology." Indian Journal of VLSI Design 2, no. 2 (2022): 5–10. http://dx.doi.org/10.54105/ijvlsid.b1210.092222.
Pełny tekst źródłaNibha, Kumari, and Vandana Niranjan Prof. "Low-Power 6T SRAM Cell using 22nm CMOS Technology." Indian Journal of VLSI Design (IJVLSID) 2, no. 2 (2022): 5–10. https://doi.org/10.54105/ijvlsid.B1210.092222.
Pełny tekst źródłaBrijendra, Mishra *1, Singh Kushwah 1. Vivek, and Sharma 2. Rishi. "MODELING OF HYBRID MOS FOR THE IMPLEMENTATION OF SWITCHED CAPACITOR FILTER USING SINGLE ELECTRON TRANSISTOR." International Journal of Engineering Technologies and Management Research 5, no. 2 (SE) (2018): 294–300. https://doi.org/10.5281/zenodo.1247477.
Pełny tekst źródłaLee, ChoongHyun, and Yi Zhao. "Advanced CMOS Devices and Applications." Electronics 13, no. 1 (2023): 134. http://dx.doi.org/10.3390/electronics13010134.
Pełny tekst źródłaPatel, Ambresh, and Ritesh Sadiwala. "Optimizing and Recuperating the Leakages in Low Voltage CMOS Circuits." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, no. 02 (2022): 202–5. http://dx.doi.org/10.18090/samriddhi.v14i02.13.
Pełny tekst źródłaPackan, Paul A. "Scaling Transistors into the Deep-Submicron Regime." MRS Bulletin 25, no. 6 (2000): 18–21. http://dx.doi.org/10.1557/mrs2000.93.
Pełny tekst źródłaYang, Kaige, Xuge Fan, and Jie Ding. "Fabrication and characterization of bilayer graphene transistors." Journal of Physics: Conference Series 2982, no. 1 (2025): 012026. https://doi.org/10.1088/1742-6596/2982/1/012026.
Pełny tekst źródłaGowtham, Reddy Annapareddy, and Pathak Jyotirmoy. "Realization of TMD Circuits: Inverter, and Operational Amplifier." International Journal of Innovative Science and Research Technology 8, no. 2 (2023): 1290–95. https://doi.org/10.5281/zenodo.7690255.
Pełny tekst źródłaHaggag, Amr, William McMahon, Karl Hess, Björn Fischer, and Leonard F. Register. "Impact of Scaling on CMOS Chip Failure Rate, and Design Rules for Hot Carrier Reliability." VLSI Design 13, no. 1-4 (2001): 111–15. http://dx.doi.org/10.1155/2001/90787.
Pełny tekst źródłaPan, Y. "A fundamental limitation for bipolar transistor scaling." IEEE Electron Device Letters 11, no. 10 (1990): 445–47. http://dx.doi.org/10.1109/55.62991.
Pełny tekst źródłaNagy, Roland, Alex Burenkov, and Jürgen Lorenz. "Numerical evaluation of the ITRS transistor scaling." Journal of Computational Electronics 14, no. 1 (2014): 192–202. http://dx.doi.org/10.1007/s10825-014-0638-0.
Pełny tekst źródłaLu, Bin Bin, and Jian Ping Hu. "Complementary Pass-Transistor Adiabatic Logic Using Dual Threshold CMOS Techniques." Applied Mechanics and Materials 39 (November 2010): 55–60. http://dx.doi.org/10.4028/www.scientific.net/amm.39.55.
Pełny tekst źródłaRadamson, Henry H., Yuanhao Miao, Ziwei Zhou, et al. "CMOS Scaling for the 5 nm Node and Beyond: Device, Process and Technology." Nanomaterials 14, no. 10 (2024): 837. http://dx.doi.org/10.3390/nano14100837.
Pełny tekst źródłaSwerts, Johan. "(Keynote) ALD Challenges and Opportunities in Light of Future Trends in Si-Based Nanoelectronics." ECS Meeting Abstracts MA2023-02, no. 29 (2023): 1434. http://dx.doi.org/10.1149/ma2023-02291434mtgabs.
Pełny tekst źródłaChen, Zhuo, Huilong Zhu, Guilei Wang, et al. "Investigation on Recrystallization Channel for Vertical C-Shaped-Channel Nanosheet FETs by Laser Annealing." Nanomaterials 13, no. 11 (2023): 1786. http://dx.doi.org/10.3390/nano13111786.
Pełny tekst źródłaNandhaiahgari, Dinesh Kumar, Prasad Somineni Rajendra, and Raja Kumari CH. "Design and analysis of different full adder cells using new technologies." International Journal of Reconfigurable and Embedded Systems 9, no. 2 (2020): 116–24. https://doi.org/10.11591/ijres.v9.i2.pp116-124.
Pełny tekst źródłaZhao, Dongxue, Zhiliang Xia, Tao Yang, Yuancheng Yang, Wenxi Zhou, and Zongliang Huo. "A Novel Capacitorless 1T DRAM with Embedded Oxide Layer." Micromachines 13, no. 10 (2022): 1772. http://dx.doi.org/10.3390/mi13101772.
Pełny tekst źródłaKumar, Aruru Sai, V. Bharath Srinivasulu, K. Nishnath Rao, Kondeti Keerthi, Shivani Kethapelly, and Ragidimilli Sai Abhinav. "Gate Dielectric Engineering on 2D FETs for Continued Scaling." Journal of Physics: Conference Series 2837, no. 1 (2024): 012051. http://dx.doi.org/10.1088/1742-6596/2837/1/012051.
Pełny tekst źródłaWang, Peng-Fei, Xi Lin, Lei Liu, et al. "A Semi-Floating Gate Transistor for Low-Voltage Ultrafast Memory and Sensing Operation." Science 341, no. 6146 (2013): 640–43. http://dx.doi.org/10.1126/science.1240961.
Pełny tekst źródłaIzhar, Hussain, Vacca Marco, Riente Fabrizio, and Graziano Mariagrazia. "A Unified Approach for Performance Degradation Analysis from Transistor to Gate Level." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 1 (2018): 412–20. https://doi.org/10.11591/ijece.v8i1.pp412-420.
Pełny tekst źródłaRenukarani, S., Bhavana Godavarthi, SK Bia Roshini, and Mohammad Khadir. "A Novel concept on 8-Transistor Dynamic Feedback Control on Static RAM Cell Array." International Journal of Engineering & Technology 7, no. 2.20 (2018): 109. http://dx.doi.org/10.14419/ijet.v7i2.20.12185.
Pełny tekst źródłaWong, Hei, and Kuniyuki Kakushima. "On the Vertically Stacked Gate-All-Around Nanosheet and Nanowire Transistor Scaling beyond the 5 nm Technology Node." Nanomaterials 12, no. 10 (2022): 1739. http://dx.doi.org/10.3390/nano12101739.
Pełny tekst źródłaMasalsky, Nikolay. "Silicon on isolator ribbon field-effect nanotransistors for high-sensitivity low-power biosensor." Journal of Engineering and Technological Sciences 54, no. 2 (2022): 220214. http://dx.doi.org/10.5614/j.eng.technol.sci.2022.54.2.14.
Pełny tekst źródłaEt. al., Kothamasu Jyothi,. "9T SRAM CELL WITH MT-SVL TECHNIQUE FOR LEAKAGE POWER REDUCTION." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (2021): 1139–43. http://dx.doi.org/10.17762/itii.v9i2.465.
Pełny tekst źródłaMarrakh, R., and A. Bouhdada. "Modeling of the I–V Characteristics for LDD-nMOSFETs in Relation with Defects Induced by Hot-Carrier Injection." Active and Passive Electronic Components 26, no. 4 (2003): 197–204. http://dx.doi.org/10.1080/08827510310001624363.
Pełny tekst źródłaSri Selvarajan, Reena, Azrul Azlan Hamzah, Norliana Yusof, and Burhanuddin Yeop Majlis. "Channel length scaling and electrical characterization of graphene field effect transistor (GFET)." Indonesian Journal of Electrical Engineering and Computer Science 15, no. 2 (2019): 697. http://dx.doi.org/10.11591/ijeecs.v15.i2.pp697-703.
Pełny tekst źródła