Artykuły w czasopismach na temat „Transman qubit”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Transman qubit”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Said, T., A. Chouikh, K. Essammouni, and M. Bennai. "Implementing N-quantum phase gate via circuit QED with qubit–qubit interaction." Modern Physics Letters B 30, no. 05 (2016): 1650050. http://dx.doi.org/10.1142/s0217984916500500.
Pełny tekst źródłaYuan, Wei-Ping, Zhi-Cheng He, Sai Li, and Zheng-Yuan Xue. "Fast Reset Protocol for Superconducting Transmon Qubits." Applied Sciences 13, no. 2 (2023): 817. http://dx.doi.org/10.3390/app13020817.
Pełny tekst źródłaSun, Xiaopei, Bing Li, Enna Zhuo, et al. "Realization of superconducting transmon qubits based on topological insulator nanowires." Applied Physics Letters 122, no. 15 (2023): 154001. http://dx.doi.org/10.1063/5.0140079.
Pełny tekst źródłaTao, Rui, Xiao-Tao Mo, Zheng-Yuan Xue, and Jian Zhou. "Practical one-step synthesis of multipartite entangled states on superconducting circuits." International Journal of Quantum Information 17, no. 07 (2019): 1950051. http://dx.doi.org/10.1142/s0219749919500515.
Pełny tekst źródłaKubo, Kentaro, and Hayato Goto. "Fast parametric two-qubit gate for highly detuned fixed-frequency superconducting qubits using a double-transmon coupler." Applied Physics Letters 122, no. 6 (2023): 064001. http://dx.doi.org/10.1063/5.0138699.
Pełny tekst źródłaDong, Yuqian, Yong Li, Wen Zheng, et al. "Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit." Applied Sciences 12, no. 17 (2022): 8461. http://dx.doi.org/10.3390/app12178461.
Pełny tekst źródłaYe, Yangsen, Sirui Cao, Yulin Wu, et al. "Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler." Chinese Physics Letters 38, no. 10 (2021): 100301. http://dx.doi.org/10.1088/0256-307x/38/10/100301.
Pełny tekst źródłaBultink, C. C., T. E. O’Brien, R. Vollmer, et al. "Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements." Science Advances 6, no. 12 (2020): eaay3050. http://dx.doi.org/10.1126/sciadv.aay3050.
Pełny tekst źródłaGroszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Pełny tekst źródłaAhmad, Halima Giovanna, Caleb Jordan, Roald van den Boogaart, et al. "Investigating the Individual Performances of Coupled Superconducting Transmon Qubits." Condensed Matter 8, no. 1 (2023): 29. http://dx.doi.org/10.3390/condmat8010029.
Pełny tekst źródłaDheer, Vihaan. "The optimization of flux trajectories for the adiabatic controlled-Z gate on split-tunable transmons." AIP Advances 12, no. 9 (2022): 095306. http://dx.doi.org/10.1063/5.0087364.
Pełny tekst źródłaStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Pełny tekst źródłaStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Pełny tekst źródłaStefanazzi, Leandro, Kenneth Treptow, Neal Wilcer, et al. "The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors." Review of Scientific Instruments 93, no. 4 (2022): 044709. http://dx.doi.org/10.1063/5.0076249.
Pełny tekst źródłaSharafiev, Aleksei, Mathieu L. Juan, Oscar Gargiulo, et al. "Visualizing the emission of a single photon with frequency and time resolved spectroscopy." Quantum 5 (June 10, 2021): 474. http://dx.doi.org/10.22331/q-2021-06-10-474.
Pełny tekst źródłaLinke, Norbert M., Dmitri Maslov, Martin Roetteler, et al. "Experimental comparison of two quantum computing architectures." Proceedings of the National Academy of Sciences 114, no. 13 (2017): 3305–10. http://dx.doi.org/10.1073/pnas.1618020114.
Pełny tekst źródłaCai, Han, Qi-Chun Liu, Chang-Hao Zhao, Ying-Shan Zhang, Jian-She Liu, and Wei Chen. "Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity." Chinese Physics B 27, no. 8 (2018): 084207. http://dx.doi.org/10.1088/1674-1056/27/8/084207.
Pełny tekst źródłaNavez, P., A. G. Balanov, S. E. Savel’ev, and A. M. Zagoskin. "Quantum electrodynamics of non-demolition detection of single microwave photon by superconducting qubit array." Journal of Applied Physics 133, no. 10 (2023): 104401. http://dx.doi.org/10.1063/5.0137747.
Pełny tekst źródłaDinerstein, Alec, Caroline S. Gorham, and Eugene F. Dumitrescu. "The hybrid topological longitudinal transmon qubit." Materials for Quantum Technology 1, no. 2 (2021): 021001. http://dx.doi.org/10.1088/2633-4356/abfbc9.
Pełny tekst źródłaKannan, B., D. L. Campbell, F. Vasconcelos, et al. "Generating spatially entangled itinerant photons with waveguide quantum electrodynamics." Science Advances 6, no. 41 (2020): eabb8780. http://dx.doi.org/10.1126/sciadv.abb8780.
Pełny tekst źródłaDing, Cheng-Yun, Li-Na Ji, Tao Chen, and Zheng-Yuan Xue. "Path-optimized nonadiabatic geometric quantum computation on superconducting qubits." Quantum Science and Technology 7, no. 1 (2021): 015012. http://dx.doi.org/10.1088/2058-9565/ac3621.
Pełny tekst źródłaMaciejewski, Filip B., Zoltán Zimborás, and Michał Oszmaniec. "Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography." Quantum 4 (April 24, 2020): 257. http://dx.doi.org/10.22331/q-2020-04-24-257.
Pełny tekst źródłaAndersen, Christian Kraglund, and Alexandre Blais. "Ultrastrong coupling dynamics with a transmon qubit." New Journal of Physics 19, no. 2 (2017): 023022. http://dx.doi.org/10.1088/1367-2630/aa5941.
Pełny tekst źródłaGuo, Yanbo, Guozhong Wang та Nianquan Jiang. "Generating χ-Type Four-Qubit Entangled States in Superconducting Transmon Qubit System". International Journal of Theoretical Physics 53, № 9 (2014): 3135–41. http://dx.doi.org/10.1007/s10773-014-2110-0.
Pełny tekst źródłaSevriuk, V. A., W. Liu, J. Rönkkö, et al. "Initial experimental results on a superconducting-qubit reset based on photon-assisted quasiparticle tunneling." Applied Physics Letters 121, no. 23 (2022): 234002. http://dx.doi.org/10.1063/5.0129345.
Pełny tekst źródłaWeides, Martin P., Jeffrey S. Kline, Michael R. Vissers, et al. "Coherence in a transmon qubit with epitaxial tunnel junctions." Applied Physics Letters 99, no. 26 (2011): 262502. http://dx.doi.org/10.1063/1.3672000.
Pełny tekst źródłaTsioutsios, I., K. Serniak, S. Diamond, et al. "Free-standing silicon shadow masks for transmon qubit fabrication." AIP Advances 10, no. 6 (2020): 065120. http://dx.doi.org/10.1063/1.5138953.
Pełny tekst źródłaCherubim, Cleverson, Frederico Brito, and Sebastian Deffner. "Non-Thermal Quantum Engine in Transmon Qubits." Entropy 21, no. 6 (2019): 545. http://dx.doi.org/10.3390/e21060545.
Pełny tekst źródłaRosenblum, S., P. Reinhold, M. Mirrahimi, Liang Jiang, L. Frunzio, and R. J. Schoelkopf. "Fault-tolerant detection of a quantum error." Science 361, no. 6399 (2018): 266–70. http://dx.doi.org/10.1126/science.aat3996.
Pełny tekst źródłaGao, Gui-Long, Gen-Chang Cai, Shou-Sheng Huang, Ming-Feng Wang, and Nian-Quan Jiang. "One-Step Generation of Multi-Qubit GHZ and W States in Superconducting Transmon Qubit System." Communications in Theoretical Physics 57, no. 2 (2012): 205–8. http://dx.doi.org/10.1088/0253-6102/57/2/07.
Pełny tekst źródłaTsuchimoto, Yuta, and Martin Kroner. "Low-loss high-impedance circuit for quantum transduction between optical and microwave photons." Materials for Quantum Technology 2, no. 2 (2022): 025001. http://dx.doi.org/10.1088/2633-4356/ac5ac4.
Pełny tekst źródłaAntony, Abhinandan, Martin V. Gustafsson, Guilhem J. Ribeill, et al. "Miniaturizing Transmon Qubits Using van der Waals Materials." Nano Letters 21, no. 23 (2021): 10122–26. http://dx.doi.org/10.1021/acs.nanolett.1c04160.
Pełny tekst źródłaDial, Oliver, Douglas T. McClure, Stefano Poletto, et al. "Bulk and surface loss in superconducting transmon qubits." Superconductor Science and Technology 29, no. 4 (2016): 044001. http://dx.doi.org/10.1088/0953-2048/29/4/044001.
Pełny tekst źródłaGambetta, Jay M., Conal E. Murray, Y. K. K. Fung, et al. "Investigating Surface Loss Effects in Superconducting Transmon Qubits." IEEE Transactions on Applied Superconductivity 27, no. 1 (2017): 1–5. http://dx.doi.org/10.1109/tasc.2016.2629670.
Pełny tekst źródłaXu, Yilun, Gang Huang, Jan Balewski, et al. "Automatic Qubit Characterization and Gate Optimization with QubiC." ACM Transactions on Quantum Computing, April 13, 2022. http://dx.doi.org/10.1145/3529397.
Pełny tekst źródłaPlace, Alexander P. M., Lila V. H. Rodgers, Pranav Mundada, et al. "New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22030-5.
Pełny tekst źródłaWang, Z. T., Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. "Escaping detrimental interactions with microwave-dressed transmon qubits." Chinese Physics Letters, June 27, 2023. http://dx.doi.org/10.1088/0256-307x/40/7/070304.
Pełny tekst źródłaLandig, A. J., J. V. Koski, P. Scarlino, et al. "Virtual-photon-mediated spin-qubit–transmon coupling." Nature Communications 10, no. 1 (2019). http://dx.doi.org/10.1038/s41467-019-13000-z.
Pełny tekst źródłaZhang, Eric J., Srikanth Srinivasan, Neereja Sundaresan, et al. "High-performance superconducting quantum processors via laser annealing of transmon qubits." Science Advances 8, no. 19 (2022). http://dx.doi.org/10.1126/sciadv.abi6690.
Pełny tekst źródłaVepsäläinen, Antti, Roni Winik, Amir H. Karamlou, et al. "Improving qubit coherence using closed-loop feedback." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-29287-4.
Pełny tekst źródłaSpring, Peter A., Shuxiang Cao, Takahiro Tsunoda, et al. "High coherence and low cross-talk in a tileable 3D integrated superconducting circuit architecture." Science Advances 8, no. 16 (2022). http://dx.doi.org/10.1126/sciadv.abl6698.
Pełny tekst źródłaWang, Chenlu, Xuegang Li, Huikai Xu, et al. "Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds." npj Quantum Information 8, no. 1 (2022). http://dx.doi.org/10.1038/s41534-021-00510-2.
Pełny tekst źródłaKosen, Sandoko, Hang-Xi Li, Marcus Rommel, et al. "Building blocks of a flip-chip integrated superconducting quantum processor." Quantum Science and Technology, May 25, 2022. http://dx.doi.org/10.1088/2058-9565/ac734b.
Pełny tekst źródłaAsaad, Serwan, Christian Dickel, Nathan K. Langford, et al. "Independent, extensible control of same-frequency superconducting qubits by selective broadcasting." npj Quantum Information 2, no. 1 (2016). http://dx.doi.org/10.1038/npjqi.2016.29.
Pełny tekst źródłaBabu, Aravind Plathanam, Jani Tuorila, and Tapio Ala-Nissila. "State leakage during fast decay and control of a superconducting transmon qubit." npj Quantum Information 7, no. 1 (2021). http://dx.doi.org/10.1038/s41534-020-00357-z.
Pełny tekst źródłaLisenfeld, Jürgen, Alexander Bilmes, Anthony Megrant, et al. "Electric field spectroscopy of material defects in transmon qubits." npj Quantum Information 5, no. 1 (2019). http://dx.doi.org/10.1038/s41534-019-0224-1.
Pełny tekst źródłaKounalakis, Marios, Yaroslav M. Blanter, and Gary A. Steele. "Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits." npj Quantum Information 5, no. 1 (2019). http://dx.doi.org/10.1038/s41534-019-0219-y.
Pełny tekst źródłaBera, Tanmoy, Sourav Majumder, Sudhir Kumar Sahu, and Vibhor Singh. "Large flux-mediated coupling in hybrid electromechanical system with a transmon qubit." Communications Physics 4, no. 1 (2021). http://dx.doi.org/10.1038/s42005-020-00514-y.
Pełny tekst źródłaPremkumar, Anjali, Conan Weiland, Sooyeon Hwang, et al. "Microscopic relaxation channels in materials for superconducting qubits." Communications Materials 2, no. 1 (2021). http://dx.doi.org/10.1038/s43246-021-00174-7.
Pełny tekst źródłaCastellanos-Beltran, M. A., A. J. Sirois, L. Howe, et al. "Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K." Applied Physics Letters 122, no. 19 (2023). http://dx.doi.org/10.1063/5.0147692.
Pełny tekst źródła