Artykuły w czasopismach na temat „Tubular-interstitial fibrosis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tubular-interstitial fibrosis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wyczanska, Maja, Jana Rohling, Ursula Keller, Marcus R. Benz, Carsten Kirschning, and Bärbel Lange-Sperandio. "TLR2 mediates renal apoptosis in neonatal mice subjected experimentally to obstructive nephropathy." PLOS ONE 18, no. 11 (2023): e0294142. http://dx.doi.org/10.1371/journal.pone.0294142.
Pełny tekst źródłaRascio, Federica, Paola Pontrelli, Giuseppe Stefano Netti, et al. "IgE-Mediated Immune Response and Antibody-Mediated Rejection." Clinical Journal of the American Society of Nephrology 15, no. 10 (2020): 1474–83. http://dx.doi.org/10.2215/cjn.02870320.
Pełny tekst źródłaChristensen, Erik I., and Pierre J. Verroust. "Interstitial fibrosis: tubular hypothesis versus glomerular hypothesis." Kidney International 74, no. 10 (2008): 1233–36. http://dx.doi.org/10.1038/ki.2008.421.
Pełny tekst źródłaEskild-Jensen, Anni, Lene Fogt Paulsen, Lise Wogensen, et al. "AT1 receptor blockade prevents interstitial and glomerular apoptosis but not fibrosis in pigs with neonatal induced partial unilateral ureteral obstruction." American Journal of Physiology-Renal Physiology 292, no. 6 (2007): F1771—F1781. http://dx.doi.org/10.1152/ajprenal.00479.2006.
Pełny tekst źródłaWang, Shi-Nong, and Raimund Hirschberg. "Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis." American Journal of Physiology-Renal Physiology 278, no. 4 (2000): F554—F560. http://dx.doi.org/10.1152/ajprenal.2000.278.4.f554.
Pełny tekst źródłaThomas, S. E., S. Anderson, K. L. Gordon, T. T. Oyama, S. J. Shankland, and R. J. Johnson. "Tubulointerstitial disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal ischemia." Journal of the American Society of Nephrology 9, no. 2 (1998): 231–42. http://dx.doi.org/10.1681/asn.v92231.
Pełny tekst źródłaLeong, Khai Gene, Elyce Ozols, John Kanellis, David J. Nikolic-Paterson, and Frank Y. Ma. "Cyclophilin A Promotes Inflammation in Acute Kidney Injury but Not in Renal Fibrosis." International Journal of Molecular Sciences 21, no. 10 (2020): 3667. http://dx.doi.org/10.3390/ijms21103667.
Pełny tekst źródłaWang, Shudan, Ming Wu, Luis Chiriboga, Chaim Putterman, Anna Broder, and H. Michael Belmont. "4336 Renal Tubular Complement C9 Deposition is Associated with Renal Tubular Damage and Fibrosis in Lupus Nephritis." Journal of Clinical and Translational Science 4, s1 (2020): 144. http://dx.doi.org/10.1017/cts.2020.424.
Pełny tekst źródłaPichler, R. H., N. Franceschini, B. A. Young, et al. "Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin." Journal of the American Society of Nephrology 6, no. 4 (1995): 1186–96. http://dx.doi.org/10.1681/asn.v641186.
Pełny tekst źródłaWang, Hao, Yujiao Deng, Limeng He, Yan Deng, and Wei Zhang. "Renal Interstitial Fibrosis Detected on 18F-AlF-NOTA-FAPI-04 PET/CT in a Patient With Multiple Myeloma." Clinical Nuclear Medicine 48, no. 10 (2023): 896–98. http://dx.doi.org/10.1097/rlu.0000000000004804.
Pełny tekst źródłaShappell, S. B., T. Gurpinar, J. Lechago, W. N. Suki, and L. D. Truong. "Chronic obstructive uropathy in severe combined immunodeficient (SCID) mice: lymphocyte infiltration is not required for progressive tubulointerstitial injury." Journal of the American Society of Nephrology 9, no. 6 (1998): 1008–17. http://dx.doi.org/10.1681/asn.v961008.
Pełny tekst źródłaWen, Jin, Zhengwei Ma, Man J. Livingston, et al. "Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease." American Journal of Physiology-Renal Physiology 319, no. 4 (2020): F664—F673. http://dx.doi.org/10.1152/ajprenal.00292.2020.
Pełny tekst źródłaEddy, A. A. "Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions." Journal of the American Society of Nephrology 5, no. 6 (1994): 1273–87. http://dx.doi.org/10.1681/asn.v561273.
Pełny tekst źródłaForbes, Michael S., Barbara A. Thornhill, Jordan J. Minor, Katherine A. Gordon, Carolina I. Galarreta, and Robert L. Chevalier. "Fight-or-flight: murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis." American Journal of Physiology-Renal Physiology 303, no. 1 (2012): F120—F129. http://dx.doi.org/10.1152/ajprenal.00110.2012.
Pełny tekst źródłaMuramatsu, Masaki, Yoji Hyodo, Abigail Lee, et al. "Transplant nephrectomy; pathological features of 124 consecutive cases in a single center study over 10 years." Journal of Nephropathology 8, no. 3 (2019): 23. http://dx.doi.org/10.15171/jnp.2019.23.
Pełny tekst źródłaWang, S., M. Wu, L. Chiriboga, et al. "OP0043 RENAL TUBULAR COMPLEMENT C9 DEPOSITION IS ASSOCIATED WITH RENAL TUBULAR DAMAGE AND FIBROSIS IN LUPUS NEPHRITIS." Annals of the Rheumatic Diseases 79, Suppl 1 (2020): 28.2–29. http://dx.doi.org/10.1136/annrheumdis-2020-eular.2394.
Pełny tekst źródłaWei, Qingqing, Jennifer Su, Guie Dong, Ming Zhang, Yuqing Huo, and Zheng Dong. "Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells." American Journal of Physiology-Renal Physiology 316, no. 6 (2019): F1162—F1172. http://dx.doi.org/10.1152/ajprenal.00422.2018.
Pełny tekst źródłaGupta, Kanishk. "Karyomegalic Interstitial Nephritis-A Rare Cause Of Chronic Tubulointerstitial Nephritis." Nephrology & Renal Therapy 6, no. 3 (2020): 1–3. http://dx.doi.org/10.24966/nrt-7313/100042.
Pełny tekst źródłaMao, Haiping, Zhilian Li, Yi Zhou, et al. "HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy." American Journal of Physiology-Renal Physiology 295, no. 1 (2008): F202—F214. http://dx.doi.org/10.1152/ajprenal.00468.2007.
Pełny tekst źródłaWarner, Gina M., Jingfei Cheng, Bruce E. Knudsen, et al. "Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension." American Journal of Physiology-Renal Physiology 302, no. 11 (2012): F1455—F1464. http://dx.doi.org/10.1152/ajprenal.00645.2011.
Pełny tekst źródłaWu, Jinhao, Chao Huang, Gang Kan, Hanyu Xiao, Xiaoping Zhang та Jun Yang. "Silymarin Regulates Tgf-β1/Smad3 Signaling Pathway and Improves Renal Tubular Interstitial Fibrosis Caused by Obstructive Nephropathy". Current Topics in Nutraceutical Research 19, № 4 (2021): 508–13. http://dx.doi.org/10.37290/ctnr2641-452x.19:508-513.
Pełny tekst źródłaHaas, Mark. "Chronic allograft nephropathy or interstitial fibrosis and tubular atrophy." Current Opinion in Nephrology and Hypertension 23, no. 3 (2014): 245–50. http://dx.doi.org/10.1097/01.mnh.0000444811.26884.2d.
Pełny tekst źródłaVIELHAUER, VOLKER, HANS-JOACHIM ANDERS, MATTHIAS MACK, et al. "Obstructive Nephropathy in the Mouse: Progressive Fibrosis Correlates with Tubulointerstitial Chemokine Expression and Accumulation of CC Chemokine Receptor 2- and 5-Positive Leukocytes." Journal of the American Society of Nephrology 12, no. 6 (2001): 1173–87. http://dx.doi.org/10.1681/asn.v1261173.
Pełny tekst źródłaKuruş, Meltem, Murat Ugras, and Mukaddes Esrefoglu. "Effect of resveratrol on tubular damage and interstitial fibrosis in kidneys of rats exposed to cigarette smoke." Toxicology and Industrial Health 25, no. 8 (2009): 539–44. http://dx.doi.org/10.1177/0748233709346755.
Pełny tekst źródłaKimura, Kuniko, Masayuki Iwano, Debra F. Higgins та ін. "Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis". American Journal of Physiology-Renal Physiology 295, № 4 (2008): F1023—F1029. http://dx.doi.org/10.1152/ajprenal.90209.2008.
Pełny tekst źródłaBurdmann, E. A., T. F. Andoh, C. C. Nast, et al. "Prevention of experimental cyclosporin-induced interstitial fibrosis by losartan and enalapril." American Journal of Physiology-Renal Physiology 269, no. 4 (1995): F491—F499. http://dx.doi.org/10.1152/ajprenal.1995.269.4.f491.
Pełny tekst źródłaPang, Maoyin, Jagan Kothapally, Haiping Mao, et al. "Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy." American Journal of Physiology-Renal Physiology 297, no. 4 (2009): F996—F1005. http://dx.doi.org/10.1152/ajprenal.00282.2009.
Pełny tekst źródłaQuimby, Jessica M., Shannon M. McLeland, Rachel E. Cianciolo, et al. "Frequency of histologic lesions in the kidneys of cats without kidney disease." Journal of Feline Medicine and Surgery 24, no. 12 (2022): e472-e480. http://dx.doi.org/10.1177/1098612x221123768.
Pełny tekst źródłaRekhtina, I. G., E. V. Kazarina, E. S. Stolyarevich, et al. "Morphological and immunohistochemical predictors of renal response to therapy patients with myeloma cast nephropathy and dialysis-dependent acute kidney injury." Terapevticheskii arkhiv 92, no. 7 (2020): 63–69. http://dx.doi.org/10.26442/00403660.2020.07.000776.
Pełny tekst źródłaSun, Ke, Zhenliang Fan, and Junfeng Fan. "A study on the mechanism of cordycepin in regulating autophagy and alleviating renal tubular interstitial fibrosis." Tropical Journal of Pharmaceutical Research 23, no. 3 (2024): 529–35. http://dx.doi.org/10.4314/tjpr.v23i3.6.
Pełny tekst źródłaDebelle, Frédéric D., Joëlle L. Nortier, Eric G. De Prez, et al. "Aristolochic Acids Induce Chronic Renal Failure with Interstitial Fibrosis in Salt-Depleted Rats." Journal of the American Society of Nephrology 13, no. 2 (2002): 431–36. http://dx.doi.org/10.1681/asn.v132431.
Pełny tekst źródłaTampe, Désirée, Laura Schridde, Peter Korsten, et al. "Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments." Cells 10, no. 8 (2021): 2014. http://dx.doi.org/10.3390/cells10082014.
Pełny tekst źródłaRanganathan, Punithavathi, Calpurnia Jayakumar, and Ganesan Ramesh. "Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling." American Journal of Physiology-Renal Physiology 304, no. 8 (2013): F1054—F1065. http://dx.doi.org/10.1152/ajprenal.00650.2012.
Pełny tekst źródłaHuang, Ming, Shuai Zhu, Huihui Huang, et al. "Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis." Journal of the American Society of Nephrology 30, no. 11 (2019): 2073–90. http://dx.doi.org/10.1681/asn.2018111162.
Pełny tekst źródłaWang, Xiaohua, Yang Zhou, Ruoyun Tan, et al. "Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy." American Journal of Physiology-Renal Physiology 299, no. 5 (2010): F973—F982. http://dx.doi.org/10.1152/ajprenal.00216.2010.
Pełny tekst źródłaGui, Yuan, and Chunsun Dai. "mTOR Signaling in Kidney Diseases." Kidney360 1, no. 11 (2020): 1319–27. http://dx.doi.org/10.34067/kid.0003782020.
Pełny tekst źródłaYamashita, Noriyuki, Tetsuro Kusaba, Tomohiro Nakata, et al. "Intratubular epithelial-mesenchymal transition and tubular atrophy after kidney injury in mice." American Journal of Physiology-Renal Physiology 319, no. 4 (2020): F579—F591. http://dx.doi.org/10.1152/ajprenal.00108.2020.
Pełny tekst źródłaKida, Yujiro, Kinji Asahina, Hirobumi Teraoka, Inna Gitelman, and Tetsuji Sato. "Twist Relates to Tubular Epithelial-Mesenchymal Transition and Interstitial Fibrogenesis in the Obstructed Kidney." Journal of Histochemistry & Cytochemistry 55, no. 7 (2007): 661–73. http://dx.doi.org/10.1369/jhc.6a7157.2007.
Pełny tekst źródłaMorales, Enrique, Hernando Trujillo, Teresa Bada, et al. "What is the value of repeat kidney biopsies in patients with lupus nephritis?" Lupus 30, no. 1 (2020): 25–34. http://dx.doi.org/10.1177/0961203320965703.
Pełny tekst źródłaGinley, Brandon, Kuang-Yu Jen, Seung Seok Han, et al. "Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis." Journal of the American Society of Nephrology 32, no. 4 (2021): 837–50. http://dx.doi.org/10.1681/asn.2020050652.
Pełny tekst źródłaHart, Allyson, Scott Jackson, Bertram L. Kasiske, et al. "Uric Acid and Allograft Loss From Interstitial Fibrosis/Tubular Atrophy." Transplantation 97, no. 10 (2014): 1066–71. http://dx.doi.org/10.1097/01.tp.0000440952.29757.66.
Pełny tekst źródłaCui, Wenpeng, Hasiyeti Maimaitiyiming, Xinyu Qi, et al. "Increasing cGMP-dependent protein kinase activity attenuates unilateral ureteral obstruction-induced renal fibrosis." American Journal of Physiology-Renal Physiology 306, no. 9 (2014): F996—F1007. http://dx.doi.org/10.1152/ajprenal.00657.2013.
Pełny tekst źródłaCahyawati, Putu Nita, Ngatidjan ., Dwi Cahyani Ratna Sari, et al. "SIMVASTATIN ATTENUATES RENAL FAILURE IN MICE WITH A 5/6 SUBTOTAL NEPHRECTOMY." International Journal of Pharmacy and Pharmaceutical Sciences 9, no. 5 (2017): 12. http://dx.doi.org/10.22159/ijpps.2017v9i5.12261.
Pełny tekst źródłaWilson, Parker C., Michael Kashgarian, and Gilbert Moeckel. "Interstitial inflammation and interstitial fibrosis and tubular atrophy predict renal survival in lupus nephritis." Clinical Kidney Journal 11, no. 2 (2017): 207–18. http://dx.doi.org/10.1093/ckj/sfx093.
Pełny tekst źródłaYao, Lan, M. Frances Wright, Brandon C. Farmer, et al. "Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction." Nephrology Dialysis Transplantation 34, no. 12 (2019): 2042–50. http://dx.doi.org/10.1093/ndt/gfz050.
Pełny tekst źródłaFine, L. G., and J. T. Norman. "Renal growth responses to acute and chronic injury: routes to therapeutic intervention." Journal of the American Society of Nephrology 2, no. 10 (1992): S206. http://dx.doi.org/10.1681/asn.v210s206.
Pełny tekst źródłaYang, Junwei, and Youhua Liu. "Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy." American Journal of Physiology-Renal Physiology 284, no. 2 (2003): F349—F357. http://dx.doi.org/10.1152/ajprenal.00154.2002.
Pełny tekst źródłaTorsello, Barbara, Sofia De Marco, Silvia Bombelli, et al. "High glucose induces an activated state of partial epithelial-mesenchymal transition in human primary tubular cell cultures." PLOS ONE 18, no. 2 (2023): e0279655. http://dx.doi.org/10.1371/journal.pone.0279655.
Pełny tekst źródłaMa, Frank Y., Jian Liu, A. Richard Kitching, Carl L. Manthey, and David J. Nikolic-Paterson. "Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney." American Journal of Physiology-Renal Physiology 296, no. 1 (2009): F177—F185. http://dx.doi.org/10.1152/ajprenal.90498.2008.
Pełny tekst źródłaJung, Hyun Jin, Hyun-Jin An, Mi-Gyeong Gwon, et al. "Anti-Fibrotic Effect of Synthetic Noncoding Oligodeoxynucleotide for Inhibiting mTOR and STAT3 via the Regulation of Autophagy in an Animal Model of Renal Injury." Molecules 27, no. 3 (2022): 766. http://dx.doi.org/10.3390/molecules27030766.
Pełny tekst źródła