Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Tunnel FETs.

Artykuły w czasopismach na temat „Tunnel FETs”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Tunnel FETs”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lind, Erik, Elvedin Memisevic, Anil W. Dey, and Lars-Erik Wernersson. "III-V Heterostructure Nanowire Tunnel FETs." IEEE Journal of the Electron Devices Society 3, no. 3 (2015): 96–102. http://dx.doi.org/10.1109/jeds.2015.2388811.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pandey, Rahul, Saurabh Mookerjea, and Suman Datta. "Opportunities and Challenges of Tunnel FETs." IEEE Transactions on Circuits and Systems I: Regular Papers 63, no. 12 (2016): 2128–38. http://dx.doi.org/10.1109/tcsi.2016.2614698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sedighi, Behnam, Xiaobo Sharon Hu, Huichu Liu, Joseph J. Nahas, and Michael Niemier. "Analog Circuit Design Using Tunnel-FETs." IEEE Transactions on Circuits and Systems I: Regular Papers 62, no. 1 (2015): 39–48. http://dx.doi.org/10.1109/tcsi.2014.2342371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Moselund, K. E., H. Schmid, C. Bessire, M. T. Bjork, H. Ghoneim, and H. Riel. "InAs–Si Nanowire Heterojunction Tunnel FETs." IEEE Electron Device Letters 33, no. 10 (2012): 1453–55. http://dx.doi.org/10.1109/led.2012.2206789.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ortiz-Conde, Adelmo, Francisco J. García-Sánchez, Juan Muci, et al. "Threshold voltage extraction in Tunnel FETs." Solid-State Electronics 93 (March 2014): 49–55. http://dx.doi.org/10.1016/j.sse.2013.12.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wu, Jianzhi, Jie Min, and Yuan Taur. "Short-Channel Effects in Tunnel FETs." IEEE Transactions on Electron Devices 62, no. 9 (2015): 3019–24. http://dx.doi.org/10.1109/ted.2015.2458977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Verhulst, Anne S., William G. Vandenberghe, Karen Maex, Stefan De Gendt, Marc M. Heyns, and Guido Groeseneken. "Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates." IEEE Electron Device Letters 29, no. 12 (2008): 1398–401. http://dx.doi.org/10.1109/led.2008.2007599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck, and Mark J. W. Rodwell. "P-Type Tunnel FETs With Triple Heterojunctions." IEEE Journal of the Electron Devices Society 4, no. 6 (2016): 410–15. http://dx.doi.org/10.1109/jeds.2016.2614915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Avedillo, M. J., and J. Núñez. "Improving speed of tunnel FETs logic circuits." Electronics Letters 51, no. 21 (2015): 1702–4. http://dx.doi.org/10.1049/el.2015.2416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pandey, Rahul, Bijesh Rajamohanan, Huichu Liu, Vijaykrishnan Narayanan, and Suman Datta. "Electrical Noise in Heterojunction Interband Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 2 (2014): 552–60. http://dx.doi.org/10.1109/ted.2013.2293497.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dayeh, Shadi A., and S. Tom Picraux. "Axial Ge/Si Nanowire Heterostructure Tunnel FETs." ECS Transactions 33, no. 6 (2019): 373–78. http://dx.doi.org/10.1149/1.3487568.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Richter, S., S. Blaeser, L. Knoll, et al. "Silicon–germanium nanowire tunnel-FETs with homo- and heterostructure tunnel junctions." Solid-State Electronics 98 (August 2014): 75–80. http://dx.doi.org/10.1016/j.sse.2014.04.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gudlavalleti, R. H., B. Saman, R. Mays, et al. "Modeling of Multi-State Si and Ge Cladded Quantum Dot Gate FETs Using Verilog and ABM Simulations." International Journal of High Speed Electronics and Systems 28, no. 03n04 (2019): 1940026. http://dx.doi.org/10.1142/s0129156419400263.

Pełny tekst źródła
Streszczenie:
Quantum dot gate (QDG) field-effect transistors (FETs) fabricated using Si and Ge quantum dot layers, self-assembled in the gate region over the tunnel oxide, have exhibited 3- and 4-state behavior applicable for ternary and quaternary logic, respectively. This paper presents simulation of QDG-FETs comprising mixed Ge and Si quantum dot layers over tunnel oxide using an analog behavior model (ABM) and Verilog model. The simulations reproduce the experimental I-V characteristics of a fabricated mixed dot QDG-FET. GeOx-cladded Ge quantum dot layer is in interface to the tunnel oxide and is depos
Style APA, Harvard, Vancouver, ISO itp.
14

KARMAKAR, SUPRIYA, JOHN A. CHANDY, and FAQUIR C. JAIN. "APPLICATION OF 25 NM QUANTUM DOT GATE FETs TO THE DESIGN OF ADC AND DAC CIRCUITS." International Journal of High Speed Electronics and Systems 20, no. 03 (2011): 653–68. http://dx.doi.org/10.1142/s0129156411006945.

Pełny tekst źródła
Streszczenie:
This paper describes design of analog-to-digital converters (ADCs) and digital-to-analog onverters (DACs) using field-effect transistors that exhibit three states in their transfer characteristics. An intermediate state " i " has been observed in the transfer characteristics (drain current-gate voltage) of FETs when two layers of cladded quantum dots (e.g. SiO x - Si and GeO x - Ge ) are introduced in the gate region above the tunnel insulator between the source and drain regions. Three states in such a transistor, defined as quantum dot gate field-effect transistor (QDG-FET) include two stabl
Style APA, Harvard, Vancouver, ISO itp.
15

Aghanejad Ahmadchally, Alireza, and Morteza Gholipour. "Investigation of 6-armchair graphene nanoribbon tunnel FETs." Journal of Computational Electronics 20, no. 3 (2021): 1114–24. http://dx.doi.org/10.1007/s10825-021-01709-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zhang, Qin, Yeqing Lu, Curt A. Richter, Debdeep Jena, and Alan Seabaugh. "Optimum Bandgap and Supply Voltage in Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 8 (2014): 2719–24. http://dx.doi.org/10.1109/ted.2014.2330805.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Ilatikhameneh, Hesameddin, Gerhard Klimeck, and Rajib Rahman. "Can Homojunction Tunnel FETs Scale Below 10 nm?" IEEE Electron Device Letters 37, no. 1 (2016): 115–18. http://dx.doi.org/10.1109/led.2015.2501820.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Chen, Hongwei, Li Yuan, Qi Zhou, Chunhua Zhou, and Kevin J. Chen. "Normally-off AlGaN/GaN power tunnel-junction FETs." physica status solidi (c) 9, no. 3-4 (2012): 871–74. http://dx.doi.org/10.1002/pssc.201100338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Pala, Marco G., and David Esseni. "Interface Traps in InAs Nanowire Tunnel-FETs and MOSFETs—Part I: Model Description and Single Trap Analysis in Tunnel-FETs." IEEE Transactions on Electron Devices 60, no. 9 (2013): 2795–801. http://dx.doi.org/10.1109/ted.2013.2274196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Taniyama, Keita, Yuki Takeda, Yuki Azuma, Ziye Zheng, Junichi Motohisa, and Katsuhiro Tomioka. "Selective-Area Growth of InGaAs Nanowires on SOI and the Vertical Transistor Application." ECS Transactions 114, no. 2 (2024): 165–70. http://dx.doi.org/10.1149/11402.0165ecst.

Pełny tekst źródła
Streszczenie:
The gate-all-around (GAA) structure avoids the problems inherent in miniaturizing field-effect transistors (FETs), such as off-state leakage current and short-channel effects. Among GAA structures, vertical GAA (VGAA) structures are expected as promising building blocks for future three-dimensional integrated circuit applications. The vertical III-V nanowires (NWs) on Si are expected as the fast channel materials for the VGAA structures on Si platforms. Thus, the combination of the VGAA structure with III-V NWs on Si significantly enhances on-state current while maintaining good gate controlla
Style APA, Harvard, Vancouver, ISO itp.
21

Chen, Yi-Ju, and Bing-Yue Tsui. "Bandgap engineering of Si1− x Ge x epitaxial tunnel layer for tunnel FETs." Japanese Journal of Applied Physics 57, no. 8 (2018): 084201. http://dx.doi.org/10.7567/jjap.57.084201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Zhao, Q. T., S. Richter, L. Knoll, et al. "(Invited) Si Nanowire Tunnel FETs for Energy Efficient Nanoelectronics." ECS Transactions 66, no. 4 (2015): 69–78. http://dx.doi.org/10.1149/06604.0069ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Mallik, A. "Tunnel FETs for Mixed-Signal System-On-Chip Applications." ECS Transactions 53, no. 5 (2013): 93–104. http://dx.doi.org/10.1149/05305.0093ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Conzatti, F., M. G. Pala, and D. Esseni. "Surface-Roughness-Induced Variability in Nanowire InAs Tunnel FETs." IEEE Electron Device Letters 33, no. 6 (2012): 806–8. http://dx.doi.org/10.1109/led.2012.2192091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Jiang, Zhi, Yiqi Zhuang, Cong Li, Ping Wang, and Yuqi Liu. "Vertical-dual-source tunnel FETs with steeper subthreshold swing." Journal of Semiconductors 37, no. 9 (2016): 094003. http://dx.doi.org/10.1088/1674-4926/37/9/094003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fiore, Antonio, Jacopo Franco, Moonju Cho, et al. "Single Defect Discharge Events in Vertical-Nanowire Tunnel-FETs." IEEE Transactions on Device and Materials Reliability 17, no. 1 (2017): 253–58. http://dx.doi.org/10.1109/tdmr.2017.2655623.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Conzatti, F., M. G. Pala, D. Esseni, E. Bano, and L. Selmi. "Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs." IEEE Transactions on Electron Devices 59, no. 8 (2012): 2085–92. http://dx.doi.org/10.1109/ted.2012.2200253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Zhang, Lining, Xinnan Lin, Jin He, and Mansun Chan. "An Analytical Charge Model for Double-Gate Tunnel FETs." IEEE Transactions on Electron Devices 59, no. 12 (2012): 3217–23. http://dx.doi.org/10.1109/ted.2012.2217145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gupta, Sumeet Kumar, Jaydeep P. Kulkarni, Suman Datta, and Kaushik Roy. "Heterojunction Intra-Band Tunnel FETs for Low-Voltage SRAMs." IEEE Transactions on Electron Devices 59, no. 12 (2012): 3533–42. http://dx.doi.org/10.1109/ted.2012.2221127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Boucart, Kathy, and Adrian Mihai Ionescu. "A new definition of threshold voltage in Tunnel FETs." Solid-State Electronics 52, no. 9 (2008): 1318–23. http://dx.doi.org/10.1016/j.sse.2008.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Najmzadeh, M., K. Boucart, W. Riess, and A. M. Ionescu. "Asymmetrically strained all-silicon multi-gate n-Tunnel FETs." Solid-State Electronics 54, no. 9 (2010): 935–41. http://dx.doi.org/10.1016/j.sse.2010.04.037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Hutin, L., R. P. Oeflein, J. Borrel, et al. "Investigation of ambipolar signature in SiGeOI homojunction tunnel FETs." Solid-State Electronics 115 (January 2016): 160–66. http://dx.doi.org/10.1016/j.sse.2015.08.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Ding, Lili, Elena Gnani, Simone Gerardin, et al. "Total Ionizing Dose Effects in Si-Based Tunnel FETs." IEEE Transactions on Nuclear Science 61, no. 6 (2014): 2874–80. http://dx.doi.org/10.1109/tns.2014.2367548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Dong, Yunpeng, Lining Zhang, Xiangbin Li, Xinnan Lin, and Mansun Chan. "A Compact Model for Double-Gate Heterojunction Tunnel FETs." IEEE Transactions on Electron Devices 63, no. 11 (2016): 4506–13. http://dx.doi.org/10.1109/ted.2016.2604001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck, and Mark J. W. Rodwell. "Scalable GaSb/InAs Tunnel FETs With Nonuniform Body Thickness." IEEE Transactions on Electron Devices 64, no. 1 (2017): 96–101. http://dx.doi.org/10.1109/ted.2016.2624744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Mori, Yoshiaki, Shingo Sato, Yasuhisa Omura, Avik Chattopadhyay, and Abhijit Mallik. "On the definition of threshold voltage for tunnel FETs." Superlattices and Microstructures 107 (July 2017): 17–27. http://dx.doi.org/10.1016/j.spmi.2017.04.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Panda, Subhrasmita, Sidhartha Dash, and Guru Prasad Mishra. "Extensive electrostatic investigation of workfunction-modulated SOI tunnel FETs." Journal of Computational Electronics 15, no. 4 (2016): 1326–33. http://dx.doi.org/10.1007/s10825-016-0907-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Roy, T., Z. R. Hesabi, C. A. Joiner, A. Fujimoto, and E. M. Vogel. "Barrier engineering for double layer CVD graphene tunnel FETs." Microelectronic Engineering 109 (September 2013): 117–19. http://dx.doi.org/10.1016/j.mee.2013.02.090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Chen, Yi-Hsuan, William Cheng-Yu Ma, Jer-Yi Lin, et al. "Impact of Crystallization Method on Poly-Si Tunnel FETs." IEEE Electron Device Letters 36, no. 10 (2015): 1060–62. http://dx.doi.org/10.1109/led.2015.2468060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Dharmireddy, Ajay Kumar, Dr Sreenivasa Rao Ijjada, and Dr I. Hema Latha. "Performance Analysis of Various Fin Patterns of Hybrid Tunnel FET." International Journal of Electrical and Electronics Research 10, no. 4 (2022): 806–10. http://dx.doi.org/10.37391/ijeer.100407.

Pełny tekst źródła
Streszczenie:
High speed and low power dissipation devices are expected from future generation technology of Nano-electronic devices. Tunnel field effect transistor (TFET) technology is unique to the prominent devices in low power applications. To minimize leakage currents, the tunnel switching technology of TFETs is superior to conventional MOS FETs. The gate coverage area of different fin shape hybrid tunnel field-effect transistors is more impacted on electric characteristics of drive current, leakage current and subthreshold slope. In this paper design various fin patterns of hybrid TFET devices and sho
Style APA, Harvard, Vancouver, ISO itp.
41

Xu, Hui Fang, Yue Hua Dai, Bang Gui Guan, and Yong Feng Zhang. "Two-dimensional analytical model for asymmetric dual-gate tunnel FETs." Japanese Journal of Applied Physics 56, no. 1 (2016): 014301. http://dx.doi.org/10.7567/jjap.56.014301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Tomioka, K., T. Fukui, and J. Motohisa. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions." ECS Transactions 69, no. 10 (2015): 109–18. http://dx.doi.org/10.1149/06910.0109ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, Hao, Sheng Chang, Jin He, Qijun Huang, and Feng Liu. "The Dual Effects of Gate Dielectric Constant in Tunnel FETs." IEEE Journal of the Electron Devices Society 4, no. 6 (2016): 445–50. http://dx.doi.org/10.1109/jeds.2016.2610478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Tomioka, K., and T. Fukui. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions." ECS Transactions 61, no. 3 (2014): 81–89. http://dx.doi.org/10.1149/06103.0081ecst.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kim, Jang Hyun, Sang Wan Kim, Hyun Woo Kim, and Byung‐Gook Park. "Vertical type double gate tunnelling FETs with thin tunnel barrier." Electronics Letters 51, no. 9 (2015): 718–20. http://dx.doi.org/10.1049/el.2014.3864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Chen, Cheng, Qianqian Huang, Jiadi Zhu, Yang Zhao, Lingyi Guo, and Ru Huang. "New Understanding of Random Telegraph Noise Amplitude in Tunnel FETs." IEEE Transactions on Electron Devices 64, no. 8 (2017): 3324–30. http://dx.doi.org/10.1109/ted.2017.2712714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ahmed, Sheikh Z., Daniel S. Truesdell, Yaohua Tan, Benton H. Calhoun, and Avik W. Ghosh. "A comprehensive analysis of Auger generation impacted planar Tunnel FETs." Solid-State Electronics 169 (July 2020): 107782. http://dx.doi.org/10.1016/j.sse.2020.107782.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Zhang, Lining, and Mansun Chan. "SPICE Modeling of Double-Gate Tunnel-FETs Including Channel Transports." IEEE Transactions on Electron Devices 61, no. 2 (2014): 300–307. http://dx.doi.org/10.1109/ted.2013.2295237.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Gholizadeh, Mahdi, and Seyed Ebrahim Hosseini. "A 2-D Analytical Model for Double-Gate Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 5 (2014): 1494–500. http://dx.doi.org/10.1109/ted.2014.2313037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ghosh, Krishnendu, and Uttam Singisetti. "RF Performance and Avalanche Breakdown Analysis of InN Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 10 (2014): 3405–10. http://dx.doi.org/10.1109/ted.2014.2344914.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!