Artykuły w czasopismach na temat „Ubiquitin kinase PINK1”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Ubiquitin kinase PINK1”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zheng, Xinde, and Tony Hunter. "Pink1, the first ubiquitin kinase." EMBO Journal 33, no. 15 (2014): 1621–23. http://dx.doi.org/10.15252/embj.201489185.
Pełny tekst źródłaKane, Lesley A., Michael Lazarou, Adam I. Fogel, et al. "PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity." Journal of Cell Biology 205, no. 2 (2014): 143–53. http://dx.doi.org/10.1083/jcb.201402104.
Pełny tekst źródłaKazlauskaite, Agne, Chandana Kondapalli, Robert Gourlay, et al. "Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65." Biochemical Journal 460, no. 1 (2014): 127–41. http://dx.doi.org/10.1042/bj20140334.
Pełny tekst źródłaAguirre, Jacob D., Karen M. Dunkerley, Pascal Mercier, and Gary S. Shaw. "Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation." Proceedings of the National Academy of Sciences 114, no. 2 (2016): 298–303. http://dx.doi.org/10.1073/pnas.1613040114.
Pełny tekst źródłaLazarou, Michael, Derek P. Narendra, Seok Min Jin, Ephrem Tekle, Soojay Banerjee, and Richard J. Youle. "PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding." Journal of Cell Biology 200, no. 2 (2013): 163–72. http://dx.doi.org/10.1083/jcb.201210111.
Pełny tekst źródłaBroadway, Benjamin J., Paige K. Boneski, Jenny M. Bredenberg, et al. "Systematic Functional Analysis of PINK1 and PRKN Coding Variants." Cells 11, no. 15 (2022): 2426. http://dx.doi.org/10.3390/cells11152426.
Pełny tekst źródłaDi Rita, Anthea, Teresa Maiorino, Krenare Bruqi, Floriana Volpicelli, Gian Carlo Bellenchi, and Flavie Strappazzon. "miR-218 Inhibits Mitochondrial Clearance by Targeting PRKN E3 Ubiquitin Ligase." International Journal of Molecular Sciences 21, no. 1 (2020): 355. http://dx.doi.org/10.3390/ijms21010355.
Pełny tekst źródłaShaw, Gary S. "Switching on ubiquitylation by phosphorylating a ubiquitous activator." Biochemical Journal 460, no. 3 (2014): e1-e3. http://dx.doi.org/10.1042/bj20140459.
Pełny tekst źródłaTorres-Odio, Sylvia, Jana Key, Hans-Hermann Hoepken, et al. "Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation." Journal of Neuroinflammation 14, no. 1 (2017): 154. https://doi.org/10.1186/s12974-017-0928-0.
Pełny tekst źródłaLazarou, Michael, Danielle A. Sliter, Lesley A. Kane, et al. "The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy." Nature 524, no. 7565 (2015): 309–14. http://dx.doi.org/10.1038/nature14893.
Pełny tekst źródłaErpapazoglou, Zoi, and Olga Corti. "The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1–Parkin pathway?" Biochemical Society Transactions 43, no. 2 (2015): 297–301. http://dx.doi.org/10.1042/bst20150008.
Pełny tekst źródłaTorii, Satoru, Shuya Kasai, Tatsushi Yoshida, Ken-ichi Yasumoto, and Shigeomi Shimizu. "Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson’s Disease and Its Substrate-Involved Mouse Experimental Models." International Journal of Molecular Sciences 21, no. 4 (2020): 1202. http://dx.doi.org/10.3390/ijms21041202.
Pełny tekst źródłaHeo, Jin-Mi, Nathan J. Harper, Joao A. Paulo, et al. "Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy." Science Advances 5, no. 11 (2019): eaay4624. http://dx.doi.org/10.1126/sciadv.aay4624.
Pełny tekst źródłaMoore, D. J. "Parkin: a multifaceted ubiquitin ligase." Biochemical Society Transactions 34, no. 5 (2006): 749–53. http://dx.doi.org/10.1042/bst0340749.
Pełny tekst źródłaWhiten, Daniel R., Dezerae Cox, and Carolyn M. Sue. "PINK1 signalling in neurodegenerative disease." Essays in Biochemistry 65, no. 7 (2021): 913–23. http://dx.doi.org/10.1042/ebc20210036.
Pełny tekst źródłaOrdureau, Alban, Jin-Mi Heo, David M. Duda, et al. "Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy." Proceedings of the National Academy of Sciences 112, no. 21 (2015): 6637–42. http://dx.doi.org/10.1073/pnas.1506593112.
Pełny tekst źródłaWang, Y., K. G. Jia, H. J. Xing, et al. "Interaction of SENP6 with PINK1 promotes temozolomide resistance in neuroglioma cells via inducing the mitophagy." Молекулярная биология 58, no. 1 (2024): 126–29. http://dx.doi.org/10.31857/s0026898424010112.
Pełny tekst źródłaMatsuda, Noriyuki, Shigeto Sato, Kahori Shiba, et al. "PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy." Journal of Cell Biology 189, no. 2 (2010): 211–21. http://dx.doi.org/10.1083/jcb.200910140.
Pełny tekst źródłaKazlauskaite, Agne, Van Kelly, Clare Johnson, et al. "Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity." Open Biology 4, no. 3 (2014): 130213. http://dx.doi.org/10.1098/rsob.130213.
Pełny tekst źródłaImai, Yuzuru. "Mitochondrial Regulation by PINK1-Parkin Signaling." ISRN Cell Biology 2012 (December 17, 2012): 1–15. http://dx.doi.org/10.5402/2012/926160.
Pełny tekst źródłaShlevkov, Evgeny, Tal Kramer, Jason Schapansky, Matthew J. LaVoie, and Thomas L. Schwarz. "Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility." Proceedings of the National Academy of Sciences 113, no. 41 (2016): E6097—E6106. http://dx.doi.org/10.1073/pnas.1612283113.
Pełny tekst źródłaScott, Helen L., Nicola Buckner, Francesc Fernandez-Albert, et al. "A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria." Journal of Biological Chemistry 295, no. 10 (2020): 3285–300. http://dx.doi.org/10.1074/jbc.ra119.009699.
Pełny tekst źródłaSauvé, Véronique, and Kalle Gehring. "Deciphering the activation of the E3 ubiquitin ligase parkin." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C836. http://dx.doi.org/10.1107/s2053273314091633.
Pełny tekst źródłaYoun, Dong Hyuk, Bong Jun Kim, Eun Pyo Hong, and Jin Pyeong Jeon. "Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage." Journal of Korean Neurosurgical Society 65, no. 2 (2022): 236–44. http://dx.doi.org/10.3340/jkns.2021.0169.
Pełny tekst źródłaWalden, Helen, and Miratul M. K. Muqit. "Ubiquitin and Parkinson's disease through the looking glass of genetics." Biochemical Journal 474, no. 9 (2017): 1439–51. http://dx.doi.org/10.1042/bcj20160498.
Pełny tekst źródłaSalazar, Celia, Paula Ruiz-Hincapie, and Lina Ruiz. "The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis." Cells 7, no. 10 (2018): 154. http://dx.doi.org/10.3390/cells7100154.
Pełny tekst źródłaHuang, Shiyuan, Xiaona Wang, Jiale Yu, et al. "LonP1 regulates mitochondrial network remodeling through the PINK1/Parkin pathway during myoblast differentiation." American Journal of Physiology-Cell Physiology 319, no. 6 (2020): C1020—C1028. http://dx.doi.org/10.1152/ajpcell.00589.2019.
Pełny tekst źródłaCaulfield, Thomas R., Fabienne C. Fiesel, and Wolfdieter Springer. "Activation of the E3 ubiquitin ligase Parkin." Biochemical Society Transactions 43, no. 2 (2015): 269–74. http://dx.doi.org/10.1042/bst20140321.
Pełny tekst źródłaBader, Verian, and Konstanze F. Winklhofer. "PINK1 and Parkin: team players in stress-induced mitophagy." Biological Chemistry 401, no. 6-7 (2020): 891–99. http://dx.doi.org/10.1515/hsz-2020-0135.
Pełny tekst źródłaHeo, J. M., A. Ordureau, S. Swarup, et al. "RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway." Science Advances 4, no. 11 (2018): eaav0443. http://dx.doi.org/10.1126/sciadv.aav0443.
Pełny tekst źródłaPanicker, Nikhil, Valina L. Dawson, and Ted M. Dawson. "Activation mechanisms of the E3 ubiquitin ligase parkin." Biochemical Journal 474, no. 18 (2017): 3075–86. http://dx.doi.org/10.1042/bcj20170476.
Pełny tekst źródłaRichter, Benjamin, Danielle A. Sliter, Lina Herhaus, et al. "Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria." Proceedings of the National Academy of Sciences 113, no. 15 (2016): 4039–44. http://dx.doi.org/10.1073/pnas.1523926113.
Pełny tekst źródłaHam, Su Jin, Soo Young Lee, Saera Song, Ju-Ryung Chung, Sekyu Choi, and Jongkyeong Chung. "Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity." Journal of Biological Chemistry 291, no. 4 (2015): 1803–16. http://dx.doi.org/10.1074/jbc.m115.687319.
Pełny tekst źródłaHu, Xinchao, Chengyuan Mao, Liyuan Fan, et al. "Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells." Stem Cells International 2020 (March 12, 2020): 1–15. http://dx.doi.org/10.1155/2020/1061470.
Pełny tekst źródłaHam, Su Jin, Daewon Lee, Wen Jun Xu, et al. "Loss of UCHL1 rescues the defects related to Parkinson’s disease by suppressing glycolysis." Science Advances 7, no. 28 (2021): eabg4574. http://dx.doi.org/10.1126/sciadv.abg4574.
Pełny tekst źródłaPotting, Christoph, Christophe Crochemore, Francesca Moretti, et al. "Genome-wide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy." Proceedings of the National Academy of Sciences 115, no. 2 (2017): E180—E189. http://dx.doi.org/10.1073/pnas.1711023115.
Pełny tekst źródłaNezich, Catherine L., Chunxin Wang, Adam I. Fogel, and Richard J. Youle. "MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5." Journal of Cell Biology 210, no. 3 (2015): 435–50. http://dx.doi.org/10.1083/jcb.201501002.
Pełny tekst źródłaMauri, Sofia, Greta Bernardo, Aitor Martinez, et al. "USP8 Down-Regulation Promotes Parkin-Independent Mitophagy in the Drosophila Brain and in Human Neurons." Cells 12, no. 8 (2023): 1143. http://dx.doi.org/10.3390/cells12081143.
Pełny tekst źródłaKim, Heejeong, Byeong Tak Jeon, Isaac M. Kim, et al. "Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress." International Journal of Molecular Sciences 21, no. 17 (2020): 6130. http://dx.doi.org/10.3390/ijms21176130.
Pełny tekst źródłaHuang, Chusheng, Lipeng Li, Hailong Deng, et al. "Exploring miR-3148’s impact on Krüppel-like factor 6-driven mitophagy and apoptosis in myocardial ischemic injury." Cytojournal 22 (February 14, 2025): 19. https://doi.org/10.25259/cytojournal_209_2024.
Pełny tekst źródłaBednarczyk, Martyna, Małgorzata Muc-Wierzgoń, Sylwia Dzięgielewska-Gęsiak, and Dariusz Waniczek. "Relationship between the Ubiquitin–Proteasome System and Autophagy in Colorectal Cancer Tissue." Biomedicines 11, no. 11 (2023): 3011. http://dx.doi.org/10.3390/biomedicines11113011.
Pełny tekst źródłaHung, Chien-Min, Portia S. Lombardo, Nazma Malik, et al. "AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy." Science Advances 7, no. 15 (2021): eabg4544. http://dx.doi.org/10.1126/sciadv.abg4544.
Pełny tekst źródłaSun, Zhe, Zicheng Ma, Wandi Cao, et al. "Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation." PLOS Pathogens 21, no. 1 (2025): e1012872. https://doi.org/10.1371/journal.ppat.1012872.
Pełny tekst źródłaYoo, Lang, and Kwang Chul Chung. "The ubiquitin E3 ligase CHIP promotes proteasomal degradation of the serine/threonine protein kinase PINK1 during staurosporine-induced cell death." Journal of Biological Chemistry 293, no. 4 (2017): 1286–97. http://dx.doi.org/10.1074/jbc.m117.803890.
Pełny tekst źródłaIslam, Naeyma N., Caleb A. Weber, Matt Coban, et al. "In Silico Investigation of Parkin-Activating Mutations Using Simulations and Network Modeling." Biomolecules 14, no. 3 (2024): 365. http://dx.doi.org/10.3390/biom14030365.
Pełny tekst źródłaDunkerley, Karen M., Anne C. Rintala-Dempsey, Giulia Salzano, et al. "Distinct phosphorylation signals drive acceptor versus free ubiquitin chain targeting by parkin." Biochemical Journal 479, no. 6 (2022): 751–66. http://dx.doi.org/10.1042/bcj20210741.
Pełny tekst źródłaMoore, Andrew S., and Erika L. F. Holzbaur. "Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy." Proceedings of the National Academy of Sciences 113, no. 24 (2016): E3349—E3358. http://dx.doi.org/10.1073/pnas.1523810113.
Pełny tekst źródłaAndrew, D. Waddell, Ojha Hina, Agarwal Shalini, et al. "Regulation of Human PINK1 ubiquitin kinase by Serine167, Serine228 and Cysteine412 phosphorylation." April 10, 2023. https://doi.org/10.5281/zenodo.7813605.
Pełny tekst źródłaGan, Zhong Yan, Sylvie Callegari, Thanh N. Nguyen, et al. "Interaction of PINK1 with nucleotides and kinetin." Science Advances 10, no. 3 (2024). http://dx.doi.org/10.1126/sciadv.adj7408.
Pełny tekst źródłaSingh, Pawan K., Shalini Agarwal, Ilaria Volpi, et al. "Kinome screening identifies integrated stress response kinase EIF2AK1/HRI as a negative regulator of PINK1 mitophagy signaling." Science Advances 11, no. 19 (2025). https://doi.org/10.1126/sciadv.adn2528.
Pełny tekst źródła