Artykuły w czasopismach na temat „Underground thermal storage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Underground thermal storage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Siddiqui, Mohammed Abdul Qadeer, and Jonathan Ennis-King. "Wellbore thermal effects during underground hydrogen storage." International Journal of Hydrogen Energy 139 (June 2025): 96–106. https://doi.org/10.1016/j.ijhydene.2025.04.435.
Pełny tekst źródłaNhut, Le Minh, Waseem Raza, and Youn Cheol Park. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank." Sustainability 12, no. 20 (2020): 8686. http://dx.doi.org/10.3390/su12208686.
Pełny tekst źródłaBarros-Enriquez, Jose David, Milton Ivan Villafuerte Lopez, Angel Moises Avemañay Morocho, and Edgar Gabriel Valencia Rodriguez. "Design of a cooling system from underground thermal energy storage (UTES, Underground) Thermal Energy Storage) based on experimental results." Brazilian Journal of Development 10, no. 1 (2024): 873–84. http://dx.doi.org/10.34117/bjdv10n1-056.
Pełny tekst źródłaGonet, Andrzej, Tomasz Śliwa, Daniel Skowroński, Aneta Sapińska-Śliwa, and Andrzej Gonet. "Rock mass thermal analysis in underground thermal energy storage (UTES)." AGH Drilling,Oil,Gas 29, no. 2 (2012): 375. http://dx.doi.org/10.7494/drill.2012.29.2.375.
Pełny tekst źródłaGonzalez-Ayala, J., C. Sáez Blázquez, S. Lagüela, and I. Martín Nieto. "Assesment for optimal underground seasonal thermal energy storage." Energy Conversion and Management 308 (May 2024): 118394. http://dx.doi.org/10.1016/j.enconman.2024.118394.
Pełny tekst źródłaJin, Guolong, Xiongyao Xie, Pan Li, Hongqiao Li, Mingrui Zhao, and Meitao Zou. "Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank." Energies 17, no. 13 (2024): 3246. http://dx.doi.org/10.3390/en17133246.
Pełny tekst źródłaJones, Frank E. "LIMITATIONS ON UNDERGROUND STORAGE TANK LEAK DETECTION SYSTEMS." International Oil Spill Conference Proceedings 1989, no. 1 (1989): 3–5. http://dx.doi.org/10.7901/2169-3358-1989-1-3.
Pełny tekst źródłaSipkova, Veronika, Jiri Labudek, and Otakar Galas. "Low Energy Source Synthetic Thermal Energy Storage (STES)." Advanced Materials Research 899 (February 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.899.143.
Pełny tekst źródłaTutumlu, Hakan, Recep Yumrutaş, and Murtaza Yildirim. "Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank." Energy Exploration & Exploitation 36, no. 2 (2017): 314–34. http://dx.doi.org/10.1177/0144598717723644.
Pełny tekst źródłaBeaufait, Robert, Willy Villasmil, Sebastian Ammann, and Ludger Fischer. "Techno-Economic Analysis of a Seasonal Thermal Energy Storage System with 3-Dimensional Horizontally Directed Boreholes." Thermo 2, no. 4 (2022): 453–81. http://dx.doi.org/10.3390/thermo2040030.
Pełny tekst źródłaZhou, Xuezhi, Yujie Xu, Xinjing Zhang, et al. "Large scale underground seasonal thermal energy storage in China." Journal of Energy Storage 33 (January 2021): 102026. http://dx.doi.org/10.1016/j.est.2020.102026.
Pełny tekst źródłaLu, Fang, Xin Jiang Du, Yan Zhou, and Yang Yang Du. "New Progress of Study in Energy Storage Area of Volcanic Rocks." Advanced Materials Research 616-618 (December 2012): 100–103. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.100.
Pełny tekst źródłaOcłoń, Paweł, Maciej Ławryńczuk, and Marek Czamara. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation." Energies 14, no. 16 (2021): 5137. http://dx.doi.org/10.3390/en14165137.
Pełny tekst źródłaVillasmil, Willy, Marcel Troxler, Reto Hendry, Philipp Schuetz, and Jörg Worlitschek. "Parametric Cost Optimization of Solar Systems with Seasonal Thermal Energy Storage for Buildings." E3S Web of Conferences 246 (2021): 03003. http://dx.doi.org/10.1051/e3sconf/202124603003.
Pełny tekst źródłaRíos-Arriola, Juan, Nicolás Velázquez-Limón, Jesús Armando Aguilar-Jiménez, et al. "Comparison between Air-Exposed and Underground Thermal Energy Storage for Solar Cooling Applications." Processes 11, no. 8 (2023): 2406. http://dx.doi.org/10.3390/pr11082406.
Pełny tekst źródłaMohd Apandi, Nazirah. "Optimization of Phase Change Materials as Backfill Materials for Underground Cable." Scientific Research Journal 21, no. 2 (2024): 119–34. http://dx.doi.org/10.24191/srj.v21i2.26990.
Pełny tekst źródłaPark, Dohyun, Dong-Woo Ryu, Byung-Hee Choi, Choon Sunwoo, and Kong-Chang Han. "Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes." Journal of Korean Society For Rock Mechanics 23, no. 4 (2013): 308–18. http://dx.doi.org/10.7474/tus.2013.23.4.308.
Pełny tekst źródłaNassar, Y., A. ElNoaman, A. Abutaima, S. Yousif, and A. Salem. "Evaluation of the underground soil thermal storage properties in Libya." Renewable Energy 31, no. 5 (2006): 593–98. http://dx.doi.org/10.1016/j.renene.2005.08.001.
Pełny tekst źródłaZhang, Ying-nan, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, and Mei-hua Wei. "Development status and prospect of underground thermal energy storage technology." Journal of Groundwater Science and Engineering 12, no. 1 (2024): 92–108. http://dx.doi.org/10.26599/jgse.2024.9280008.
Pełny tekst źródłaOosterbaan, Harm, Mateusz Janiszewski, Lauri Uotinen, Topias Siren, and Mikael Rinne. "Numerical Thermal Back-calculation of the Kerava Solar Village Underground Thermal Energy Storage." Procedia Engineering 191 (2017): 352–60. http://dx.doi.org/10.1016/j.proeng.2017.05.191.
Pełny tekst źródłaAla, Eldin Mohamed Tairab, Liu Wei, Ur Rehman Ateeq, Ullah Inam, and Claude Kamdem. "Performance Analysis of Borehole U-tube Heat Exchanger Based on TRNSYS Software." Indian Journal of Science and Technology 13, no. 5 (2020): 539–51. https://doi.org/10.17485/ijst/2020/v13i05/148618.
Pełny tekst źródłaStricker, Kai, Jens C. Grimmer, Robert Egert, et al. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems." Energies 13, no. 24 (2020): 6510. http://dx.doi.org/10.3390/en13246510.
Pełny tekst źródłaZimmels, Y., F. Kirzhner, and B. Krasovitski. "Design Criteria for Compressed Air Storage in Hard Rock." Energy & Environment 13, no. 6 (2002): 851–72. http://dx.doi.org/10.1260/095830502762231313.
Pełny tekst źródłaPasqualone, Antonella. "Addressing Shortages with Storage: From Old Grain Pits to New Solutions for Underground Storage Systems." Agriculture 15, no. 3 (2025): 289. https://doi.org/10.3390/agriculture15030289.
Pełny tekst źródłaQin, Xiangxi, Yazhou Zhao, Chengjun Dai, Jian Wei, and Dahai Xue. "Thermal Performance Analysis on the Seasonal Heat Storage by Deep Borehole Heat Exchanger with the Extended Finite Line Source Model." Energies 15, no. 22 (2022): 8366. http://dx.doi.org/10.3390/en15228366.
Pełny tekst źródłaKaml, Georg, Marcellus G. Schreilechner, and Thomas Marcher. "From geology to site decision: Potential for underground heat storage in Graz." Geomechanics and Tunnelling 18, no. 1 (2025): 57–63. https://doi.org/10.1002/geot.202400080.
Pełny tekst źródłaZhu, Jiayin, Yingfang Liu, Ruixin Li, Bin Chen, Yu Chen, and Jifu Lu. "Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China." Processes 10, no. 3 (2022): 595. http://dx.doi.org/10.3390/pr10030595.
Pełny tekst źródłaKshirsagar, Mugdha, Sanjay Kulkarni, Ankush Kumar Meena, et al. "Biomimicry-Based Design of Underground Cold Storage Facilities: Energy Efficiency and Sustainability." Biomimetics 10, no. 2 (2025): 122. https://doi.org/10.3390/biomimetics10020122.
Pełny tekst źródłaHyrzyński, Rafał, Paweł Ziółkowski, Sylwia Gotzman, Bartosz Kraszewski, and Janusz Badur. "Thermodynamic analysis of the Compressed Air Energy Storage system coupled with the Underground Thermal Energy Storage." E3S Web of Conferences 137 (2019): 01023. http://dx.doi.org/10.1051/e3sconf/201913701023.
Pełny tekst źródłaNisar, Shahim. "Analysis of Thermal Energy Storage to a Combined Heat and Power Plant." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (2021): 1313–20. http://dx.doi.org/10.22214/ijraset.2021.38182.
Pełny tekst źródłaKortiš, Ján, and Michal Gottwald. "Numerical Simulation of Thermal Energy Storage in Underground Soil Heat Accumulator." Civil and Environmental Engineering 10, no. 2 (2014): 93–97. http://dx.doi.org/10.2478/cee-2014-0017.
Pełny tekst źródłaSUZUKI, Daisuke, Michihiko SIBUE, Shun MIKAMI, Kaoru YASUHARA, Takao YOKOYAMA, and Yoshito HORINO. "512 Heat pump using underground thermal storage of Launcher-typed well." Proceedings of Autumn Conference of Tohoku Branch 2005.41 (2005): 199–200. http://dx.doi.org/10.1299/jsmetohoku.2005.41.199.
Pełny tekst źródłaJiang, Yan, Qing Gao, Lihua Wang, and Ming Li. "Energy Transfer Effect of Dynamic Load on Underground Thermal Energy Storage." Procedia Environmental Sciences 12 (2012): 659–65. http://dx.doi.org/10.1016/j.proenv.2012.01.332.
Pełny tekst źródłaNi, Zhuobiao, Pauline van Gaans, Martijn Smit, Huub Rijnaarts, and Tim Grotenhuis. "Biodegradation ofcis-1,2-Dichloroethene in Simulated Underground Thermal Energy Storage Systems." Environmental Science & Technology 49, no. 22 (2015): 13519–27. http://dx.doi.org/10.1021/acs.est.5b03068.
Pełny tekst źródłaCarlsson, Anders E. "Coarse-Grained Model of Underground Thermal Energy Storage Applied to Efficiency Optimization." Energies 13, no. 8 (2020): 1918. http://dx.doi.org/10.3390/en13081918.
Pełny tekst źródłaBorko, Karlo, Mihael Brenčič, Zdenko Savšek, et al. "Insights into Aquifer and Borehole Thermal Energy Storage Systems for Slovenia’s Energy Transition." Energies 18, no. 5 (2025): 1019. https://doi.org/10.3390/en18051019.
Pełny tekst źródłaDerii, Volodymyr, and Oleksandr Zgurovets. "Heat energy storages." System Research in Energy 2023, no. 3 (2023): 4–14. http://dx.doi.org/10.15407/srenergy2023.03.004.
Pełny tekst źródłaBaeuerle, Yvonne I., Cordin Arpagaus, and Michel Y. Haller. "A Review of Seasonal Energy Storage for Net-Zero Industrial Heat: Thermal and Power-to-X Storage Including the Novel Concept of Renewable Metal Energy Carriers." Energies 18, no. 9 (2025): 2204. https://doi.org/10.3390/en18092204.
Pełny tekst źródłaMesserklinger, Sophie, Mikkel Smaadahl, and Carlo Rabaiotti. "Large thermal heat storages in rock caverns – numerical simulation of heat losses." Geomechanics and Tunnelling 17, no. 1 (2024): 64–70. http://dx.doi.org/10.1002/geot.202300050.
Pełny tekst źródłaPokhrel, Sajjan, Ali Fahrettin Kuyuk, Hosein Kalantari, and Seyed Ali Ghoreishi-Madiseh. "Techno-Economic Trade-Off between Battery Storage and Ice Thermal Energy Storage for Application in Renewable Mine Cooling System." Applied Sciences 10, no. 17 (2020): 6022. http://dx.doi.org/10.3390/app10176022.
Pełny tekst źródłaSağlam, Özdamar, Seyit Özdamar, and Suha Mert. "Simulation and modeling of a solar-aided underground energy storage system." Thermal Science, no. 00 (2023): 25. http://dx.doi.org/10.2298/tsci220913025s.
Pełny tekst źródłaRapti, Dimitra, Francesco Tinti, and Carlo Antonio Caputo. "Integrated Underground Analyses as a Key for Seasonal Heat Storage and Smart Urban Areas." Energies 17, no. 11 (2024): 2533. http://dx.doi.org/10.3390/en17112533.
Pełny tekst źródłaRotta Loria, Alessandro F. "The thermal energy storage potential of underground tunnels used as heat exchangers." Renewable Energy 176 (October 2021): 214–27. http://dx.doi.org/10.1016/j.renene.2021.05.076.
Pełny tekst źródłaISHIZUKA, Yoshio, Naoto KINOSHITA, and Tetsuo OKUNO. "Stability of a rock cavern for underground LPG storage under thermal stresses." Doboku Gakkai Ronbunshu, no. 370 (1986): 243–50. http://dx.doi.org/10.2208/jscej.1986.370_243.
Pełny tekst źródłaKozai, T. "THERMAL PERFORMANCE OF A SOLAR GREENHOUSE WITH AN UNDERGROUND HEAT STORAGE SYSTEM." Acta Horticulturae, no. 257 (December 1989): 169–82. http://dx.doi.org/10.17660/actahortic.1989.257.20.
Pełny tekst źródłaCetin, Aysegul, Yusuf Kagan Kadioglu, and Halime Paksoy. "Underground thermal heat storage and ground source heat pump activities in Turkey." Solar Energy 200 (April 2020): 22–28. http://dx.doi.org/10.1016/j.solener.2018.12.055.
Pełny tekst źródłaXie, Kun, Yong-Le Nian, and Wen-Long Cheng. "Analysis and optimization of underground thermal energy storage using depleted oil wells." Energy 163 (November 2018): 1006–16. http://dx.doi.org/10.1016/j.energy.2018.08.189.
Pełny tekst źródłaDolgun, Gülşah Karaca, Ali Keçebaş, Mustafa Ertürk, and Ali Daşdemir. "Optimal insulation of underground spherical tanks for seasonal thermal energy storage applications." Journal of Energy Storage 69 (October 2023): 107865. http://dx.doi.org/10.1016/j.est.2023.107865.
Pełny tekst źródłaEze, Fabian, Wang-je Lee, Young sub An, et al. "Experimental and simulated evaluation of inverse model for shallow underground thermal storage." Case Studies in Thermal Engineering 59 (July 2024): 104535. http://dx.doi.org/10.1016/j.csite.2024.104535.
Pełny tekst źródłaBrown, C. S., I. Kolo, A. Lyden, et al. "Assessing the technical potential for underground thermal energy storage in the UK." Renewable and Sustainable Energy Reviews 199 (July 2024): 114545. http://dx.doi.org/10.1016/j.rser.2024.114545.
Pełny tekst źródła