Artykuły w czasopismach na temat „Unmanned ground vehicles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Unmanned ground vehicles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chang, Bao Rong, Hsiu-Fen Tsai, Jyong-Lin Lyu, and Chien-Feng Huang. "Distributed sensing units deploying on group unmanned vehicles." International Journal of Distributed Sensor Networks 17, no. 7 (2021): 155014772110368. http://dx.doi.org/10.1177/15501477211036877.
Pełny tekst źródłaGorsky, Alexander, Vitaliy Demyanov, and Alexander Zhukov. "Problem of creation ground robotics vehicle." Robotics and Technical Cybernetics 10, no. 2 (2022): 154–60. http://dx.doi.org/10.31776/rtcj.10209.
Pełny tekst źródłaLi, Xin, Guang Ming Xiong, Yang Sun, et al. "Design on Hierarchical Testing System for Unmanned Ground Vehicles." Advanced Materials Research 346 (September 2011): 817–22. http://dx.doi.org/10.4028/www.scientific.net/amr.346.817.
Pełny tekst źródłaHay, A., C. Samson, L. Tuck, and A. Ellery. "Magnetic surveying with an unmanned ground vehicle." Journal of Unmanned Vehicle Systems 6, no. 4 (2018): 249–66. http://dx.doi.org/10.1139/juvs-2018-0013.
Pełny tekst źródłaAli, Ali M., Md Asri Ngadi, Rohana Sham, and Israa Ibraheem Al_Barazanchi. "Enhanced QoS Routing Protocol for an Unmanned Ground Vehicle, Based on the ACO Approach." Sensors 23, no. 3 (2023): 1431. http://dx.doi.org/10.3390/s23031431.
Pełny tekst źródłaAl-Bkree, Mahmod. "Optimizing Perimeter Surveillance Drones to enhance the security system of unmanned aerial vehicles." Security science journal 2, no. 2 (2021): 105–15. http://dx.doi.org/10.37458/ssj.2.2.7.
Pełny tekst źródłaZhang, Xin, Yan An Zhao, Li Gao, and Dong Hao Hao. "Evaluation Framework and Method of the Intelligent Behaviors of Unmanned Ground Vehicles Based on AHP Scheme." Applied Mechanics and Materials 721 (December 2014): 476–80. http://dx.doi.org/10.4028/www.scientific.net/amm.721.476.
Pełny tekst źródłaValerio, Carlos G., Néstor Aguillón, Eduardo S. Espinoza, and Rogelio Lozano. "Reference Generator for a System of Multiple Tethered Unmanned Aerial Vehicles." Drones 6, no. 12 (2022): 390. http://dx.doi.org/10.3390/drones6120390.
Pełny tekst źródłaAkopov, A. S., N. K. Khachatryan, L. A. Beklaryan, and A. L. Beklaryan. "UNMANNED VEHICLE CONTROL SYSTEM BASED ON FUZZY CLUSTERING. PART 2. FUZZY CLUSTERING AND SOFTWARE IMPLEMENTATION." Vestnik komp'iuternykh i informatsionnykh tekhnologii, no. 196 (October 2020): 21–29. http://dx.doi.org/10.14489/vkit.2020.10.pp.021-029.
Pełny tekst źródłaAkopov, A. S., N. K. Khachatryan, L. A. Beklaryan, and A. L. Beklaryan. "UNMANNED VEHICLE CONTROL SYSTEM BASED ON FUZZY CLUSTERING. PART 2. FUZZY CLUSTERING AND SOFTWARE IMPLEMENTATION." Vestnik komp'iuternykh i informatsionnykh tekhnologii, no. 196 (October 2020): 21–29. http://dx.doi.org/10.14489/vkit.2020.10.pp.021-029.
Pełny tekst źródłaKuprinenko, O., V. Mocherad, S. Zahrebelnyi, and O. Sliusarenko. "Determination of the need of the army in unmanned ground vehicles." Military Technical Collection, no. 26 (June 23, 2022): 33–41. http://dx.doi.org/10.33577/2312-4458.26.2022.33-41.
Pełny tekst źródłaKrutikov, N. D., and A. A. Voronov. "Organizing urban ground transport using advanced unmanned technologies." Transport Technician: Education and Practice 6, no. 2 (2025): 216–21. https://doi.org/10.46684/2687-1033.2025.2.216-221.
Pełny tekst źródłaTypiak, Andrzej, and Michał Gnatowski. "Map Building System for Unmanned Ground Vehicle." Solid State Phenomena 180 (November 2011): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.180.131.
Pełny tekst źródłaLiu, Qi, Zirui Li, Shihua Yuan, Yuzheng Zhu, and Xueyuan Li. "Review on Vehicle Detection Technology for Unmanned Ground Vehicles." Sensors 21, no. 4 (2021): 1354. http://dx.doi.org/10.3390/s21041354.
Pełny tekst źródłaSohail, Hamza, Amir Hamza, Nasir Rashid, Muhammad Saad Ali, and Taha Ghani. "Optimization of Impact Resistant Throwable Unmanned Ground Vehicle Using Mathematical Modeling Techniques." MATEC Web of Conferences 398 (2024): 01013. http://dx.doi.org/10.1051/matecconf/202439801013.
Pełny tekst źródłaShipov, Il’ya, and Evgeniy Vetoshkin. "Integrated navigation of unmanned ground vehicles." Robotics and Technical Cybernetics 9, no. 2 (2021): 127–32. http://dx.doi.org/10.31776/rtcj.9207.
Pełny tekst źródłaMuangmin, Kamonwan, and Thanapat Wanichanon. "Formation keeping of unmanned ground vehicles." MATEC Web of Conferences 95 (2017): 09006. http://dx.doi.org/10.1051/matecconf/20179509006.
Pełny tekst źródłaZhao, Ya-Nan, Kai-Wen Meng, and Li Gao. "The Entropy-Cost Function Evaluation Method for Unmanned Ground Vehicles." Mathematical Problems in Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/410796.
Pełny tekst źródłaBai, Jingpan, Yifan Zhao, Bozhong Yang, Houling Ji, Botao Liu, and Yunhao Chen. "Joint Optimization Strategy of Task Migration and Power Allocation Based on Soft Actor-Critic in Unmanned Aerial Vehicle-Assisted Internet of Vehicles Environment." Drones 8, no. 11 (2024): 693. http://dx.doi.org/10.3390/drones8110693.
Pełny tekst źródłaDreus, Andrii, and Olena Kravets. "Rationale for choosing the airfoil of a UAV wing using a dynamic ground effect principle." Eastern-European Journal of Enterprise Technologies 6, no. 1 (132) (2024): 6–13. https://doi.org/10.15587/1729-4061.2024.314844.
Pełny tekst źródłaSun, Yang, Guang Ming Xiong, Hui Yan Chen, Shao Bin Wu, Jian Wei Gong, and Yan Jiang. "A Cost Function-Oriented Quantitative Evaluation Method for Unmanned Ground Vehicles." Advanced Materials Research 301-303 (July 2011): 701–6. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.701.
Pełny tekst źródłaArokiasami, Willson Amalraj, Prahlad Vadakkepat, Kay Chen Tan, and Dipti Srinivasan. "Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework." Unmanned Systems 06, no. 04 (2018): 231–50. http://dx.doi.org/10.1142/s2301385018500061.
Pełny tekst źródłaNowakowski, Marek, Krzysztof Kosiuczenko, and Jindřich VILIŠ. "Unmanned Vehicle Mobility Improvement Against Ballistic Threats During Special Missions: A Simulation Study." Transport Problems 20, no. 1 (2025): 139–52. https://doi.org/10.20858/tp.2025.20.1.12.
Pełny tekst źródłaCazacu, Mihai, Tiberiu Axinte, and Elena Curca. "The Importance of an Unmanned Surface Vehicle: A Point of View." International Journal of Advanced Multidisciplinary Research and Studies 4, no. 2 (2024): 1545–48. http://dx.doi.org/10.62225/2583049x.2024.4.2.2730.
Pełny tekst źródłaLiu, Sheng, Jingxiang Yu, Zhenghao Ke, Fengji Dai, and Yibin Chen. "Aerial–ground collaborative 3D reconstruction for fast pile volume estimation with unexplored surroundings." International Journal of Advanced Robotic Systems 17, no. 2 (2020): 172988142091994. http://dx.doi.org/10.1177/1729881420919948.
Pełny tekst źródłaNovák, Andrej, Kristína Kováčiková, Branislav Kandera, and Alena Novák Sedláčková. "Global Navigation Satellite Systems Signal Vulnerabilities in Unmanned Aerial Vehicle Operations: Impact of Affordable Software-Defined Radio." Drones 8, no. 3 (2024): 109. http://dx.doi.org/10.3390/drones8030109.
Pełny tekst źródłaAshirov, A. K., S. Zh Kinzhikeev, and T. B. Karbaev. "Features of the use of robotic vehicles in the interests of organizing the logistics of troops." Proceeding "Bulletin MILF" 60, no. 4 (2024): 41–47. https://doi.org/10.56132/2791-3368.2024.4-60-04.
Pełny tekst źródłaMeng, Channa, John Morris, and Chattraku Sombattheera. "Tracking from Unmanned Aerial Vehicles." Applied Mechanics and Materials 781 (August 2015): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amm.781.491.
Pełny tekst źródłaBis, Rachael, Huei Peng, and A. Galip Ulsoy. "Vehicle occupancy space for unmanned ground vehicles with actuation error." International Journal of Vehicle Autonomous Systems 12, no. 2 (2014): 180. http://dx.doi.org/10.1504/ijvas.2014.060115.
Pełny tekst źródłaMiteva, Rositsa, Todor Kunchev, Svetoslav Zabunov, Garo Mardirossian, and Roxandra Pamukoff-Michelson. "Ionizing Radiation Sensor for Nanosatellites, Microdrones and Small Unmanned Ground Vehicles." Aerospace Research in Bulgaria 34 (2022): 56–65. http://dx.doi.org/10.3897/arb.v34.e04.
Pełny tekst źródłaParfiryev, A. V., O. V. Parfiryeva, and A. V. Dushkin. "Optimization of the algorithm of information analysis and processing in the optoelectronic system." Proceedings of Universities. Electronics 27, no. 1 (2022): 106–19. http://dx.doi.org/10.24151/1561-5405-2022-27-1-106-119.
Pełny tekst źródłaLiu, Jun, Pengliang Yang, Mingming Lu, Lei Sun, and He Huang. "Research on the reconstruction configuration and motion behavior of unmanned metamorphic vehicle." International Journal of Advanced Robotic Systems 19, no. 1 (2022): 172988142210759. http://dx.doi.org/10.1177/17298814221075931.
Pełny tekst źródłaShuang, Xuecheng, and Yan Zhang. "Design of Unmanned Wing-in-ground Effect Vehicle with Tri-fold Main Wing." E3S Web of Conferences 248 (2021): 02062. http://dx.doi.org/10.1051/e3sconf/202124802062.
Pełny tekst źródłaFabris, Eduardo Jose, Vicenzo Abichequer Sangalli, Leonardo Pavanatto Soares, and Márcio Sarroglia Pinho. "Immersive telepresence on the operation of unmanned vehicles." International Journal of Advanced Robotic Systems 18, no. 1 (2021): 172988142097854. http://dx.doi.org/10.1177/1729881420978544.
Pełny tekst źródła., Abhishek, Gurkirat Singh, Harsh Raj, and Hrithik Tanwar. "Design and Development of an Intelligent Ground Vehicle for constrained environments." International Journal of Advance Research and Innovation 9, no. 2 (2021): 97–102. http://dx.doi.org/10.51976/ijari.922115.
Pełny tekst źródłaVäljaots, E., and R. Sell. "Energy efficiency profiles for unmanned ground vehicles." Proceedings of the Estonian Academy of Sciences 68, no. 1 (2019): 55. http://dx.doi.org/10.3176/proc.2019.1.04.
Pełny tekst źródłaHester, Geoff, Chris Smith, Pete Day, and Antony Waldock. "The Next Generation of Unmanned Ground Vehicles." Measurement and Control 45, no. 4 (2012): 117–21. http://dx.doi.org/10.1177/002029401204500404.
Pełny tekst źródłaLong, Yixing. "Weather-adaptive slam using unmanned ground vehicles." Applied and Computational Engineering 41, no. 1 (2024): 222–41. http://dx.doi.org/10.54254/2755-2721/41/20230755.
Pełny tekst źródłaChen, Yingjue, Yingnan Gu, Panfeng Li, and Feng Lin. "Minimizing the number of wireless charging PAD for unmanned aerial vehicle–based wireless rechargeable sensor networks." International Journal of Distributed Sensor Networks 17, no. 12 (2021): 155014772110559. http://dx.doi.org/10.1177/15501477211055958.
Pełny tekst źródłaPalacios, Filiberto Muñoz, Eduardo Steed Espinoza Quesada, Guillaume Sanahuja, Sergio Salazar, Octavio Garcia Salazar, and Luis Rodolfo Garcia Carrillo. "Test bed for applications of heterogeneous unmanned vehicles." International Journal of Advanced Robotic Systems 14, no. 1 (2017): 172988141668711. http://dx.doi.org/10.1177/1729881416687111.
Pełny tekst źródłaJay Kushwaha, Akash Gupta, Dhannajay Kumar Vishwakarma, Indrajeet, and Mr.Darshan Srivastav. "RAKSHAK-The Multipurpose Unmanned Ground Vehicle." International Research Journal on Advanced Engineering Hub (IRJAEH) 2, no. 06 (2024): 1816–20. http://dx.doi.org/10.47392/irjaeh.2024.0249.
Pełny tekst źródłaZhong, Biqing, Weihang Liu, Riya Zeng, Qiang Guo, and Haibo Jiang. "Autonomous Following for Unmanned Ground Vehicles on Unstructured Scenario: Risk and Performance Assessment." Journal of Physics: Conference Series 2478, no. 10 (2023): 102010. http://dx.doi.org/10.1088/1742-6596/2478/10/102010.
Pełny tekst źródłaShi, Chenfa, Zhi Xiong, Mingxing Chen, Rong Wang, and Jun Xiong. "Cooperative Navigation for Heterogeneous Air-Ground Vehicles Based on Interoperation Strategy." Remote Sensing 15, no. 8 (2023): 2006. http://dx.doi.org/10.3390/rs15082006.
Pełny tekst źródłaKUPICZ, Włodzimierz. "Safety of operation of unmanned ground and aerial vehicles in military use." Inżynieria Bezpieczeństwa Obiektów Antropogenicznych, no. 1 (March 31, 2025): 23–30. https://doi.org/10.37105/iboa.249.
Pełny tekst źródłaDreus, Andrii, Serhii Aleksieienko, and Valerii Nekrasov. "Determining the aerodynamic performance of a high-speed unmanned marine wig craft." Eastern-European Journal of Enterprise Technologies 4, no. 7 (130) (2024): 41–46. http://dx.doi.org/10.15587/1729-4061.2024.309708.
Pełny tekst źródłaCichella, Venanzio, and Isaac Kaminer. "Coordinated Vision-Based Tracking by Multiple Unmanned Vehicles." Drones 7, no. 3 (2023): 177. http://dx.doi.org/10.3390/drones7030177.
Pełny tekst źródłaDuganova, Elena, Ivan Novikov, Evgeny Miroshnikov, and Alexander Dolzhenko. "Development of a project to create a road transport infrastructure using small unmanned aircraft." E3S Web of Conferences 515 (2024): 02013. http://dx.doi.org/10.1051/e3sconf/202451502013.
Pełny tekst źródłaMuhammed Mirac Özer. "Artificial Intelligence of Things-Based Modular Avionics System Solution for Swarm Unmanned Combat Aerial Vehicles (SUCAVs)." International Journal of Combinatorial Optimization Problems and Informatics 16, no. 3 (2025): 254–77. https://doi.org/10.61467/2007.1558.2025.v16i3.671.
Pełny tekst źródłaАрешев, Д. С. "Quality assessment of digital processing of images obtained by aerial photography with unmanned aerial vehicles." Informacionno-technologicheskij vestnik, no. 4(30) (December 15, 2021): 83–88. http://dx.doi.org/10.21499/2409-1650-30-4-83-88.
Pełny tekst źródłaBartnicki, Adam. "Teleoperation in Remote Steering System Built in Unmanned Land Vehicles." Solid State Phenomena 223 (November 2014): 333–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.223.333.
Pełny tekst źródła