Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Valves.

Artykuły w czasopismach na temat „Valves”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Valves”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Abergel, E., Y. Bernard, E. Brochet, et al. "Valve prostheses, valves repair and homografts." Archives of Cardiovascular Diseases 101, no. 4 (2008): 264–71. http://dx.doi.org/10.1016/s1875-2136(08)73703-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Klyshnikov, R. Yu, E. A. Ovcharenko, Yu A. Kudryavtseva, and L. S. Barbarash. "“VALVE-IN-VALVE” REPROSTHESING OF CARDIAC ARTIFICIAL VALVES." Russian Journal of Cardiology, no. 11 (January 1, 2016): 73–80. http://dx.doi.org/10.15829/1560-4071-2016-11-73-80.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fortunato, Germán A., Tomás D´AngeloG, Guido Busnelli, et al. "Rapid-Deployment Valves versus Conventional Valves in Aortic Valve Replacement in Intermediate-Risk Patients." Revista Argentina de Cardiologia 92, no. 3 (2024): 198–204. http://dx.doi.org/10.7775/rac.v92.i3.20784.

Pełny tekst źródła
Streszczenie:
Background: Aortic valve replacement (AVR) in intermediate-risk (IR) patients is particularly challenging when determining the type of prosthesis to use. Rapid-deployment valves (RD-V) are emerging as a potential alternative in this patient population. Objectives: To compare early mortality, postoperative complications, and transvalvular hemodynamic parameters between AVR with conventional valves and RD-V in IR patients. Methods: We conducted a retrospective observational study of consecutive IR patients (STS-Prom score 4-8) undergoing AVR with conventional prostheses and RD-V between 2007 and
Style APA, Harvard, Vancouver, ISO itp.
4

Azadani, Ali N., and Elaine E. Tseng. "Transcatheter valve-in-valve implantation for failing bioprosthetic valves." Future Cardiology 6, no. 6 (2010): 811–31. http://dx.doi.org/10.2217/fca.10.106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bapat, Vinayak, and Kaleab N. Asrress. "Transcatheter valve-in-valve implantation for failing prosthetic valves." EuroIntervention 10, no. 8 (2014): 900–902. http://dx.doi.org/10.4244/eijv10i8a155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hai, Ting, Yannis Amador, Jelliffe Jeganathan, Arash Khamooshian, Robina Matyal, and Feroze Mahmood. "Percutaneous Valve in Valve Implantation for Dysfunctional Bioprosthetic Valves." A & A Case Reports 9, no. 8 (2017): 227–32. http://dx.doi.org/10.1213/xaa.0000000000000579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Salaun, Erwan, Anne-Sophie Zenses, Marie-Annick Clavel, et al. "Valve-in-Valve Procedure in Failed Transcatheter Aortic Valves." JACC: Cardiovascular Imaging 12, no. 1 (2019): 198–202. http://dx.doi.org/10.1016/j.jcmg.2018.03.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Noorani, Alia, and Vinayak Bapat. "Valve-in-Valve Therapy for Failed Surgical Bioprosthetic Valves." Interventional Cardiology Clinics 4, no. 1 (2015): 107–20. http://dx.doi.org/10.1016/j.iccl.2014.09.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Webb, John G. "Transcatheter valve in valve implants for failed prosthetic valves." Catheterization and Cardiovascular Interventions 70, no. 5 (2007): 765–66. http://dx.doi.org/10.1002/ccd.21379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Asoh, K., M. Walsh, E. Hickey, et al. "Percutaneous pulmonary valve implantation within bioprosthetic valves." European Heart Journal 31, no. 11 (2010): 1404–9. http://dx.doi.org/10.1093/eurheartj/ehq056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Chandola, Rahul, Kevin Teoh, Abdelsalam Elhenawy, and George Christakis. "Perceval Sutureless Valve – are Sutureless Valves Here?" Current Cardiology Reviews 11, no. 3 (2015): 220–28. http://dx.doi.org/10.2174/1573403x11666141113155744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Tayama, Eiki, Hiroshi Kawano, Tohru Takaseya, et al. "Triple Valve Replacement With Bileaflet Mechanical Valves." Japanese Circulation Journal 65, no. 4 (2001): 257–60. http://dx.doi.org/10.1253/jcj.65.257.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Barbanti, Marco, Davide Capodanno, and Corrado Tamburino. "Bioprosthetic Valves for Transcatheter Aortic Valve Replacement." JAMA 312, no. 8 (2014): 843. http://dx.doi.org/10.1001/jama.2014.8359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Reardon, Michael J. "Bioprosthetic Valves for Transcatheter Aortic Valve Replacement." JAMA 312, no. 8 (2014): 844. http://dx.doi.org/10.1001/jama.2014.8364.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Barrow, Firas, Keenan Adib, and Andrei Pop. "Bioprosthetic Valve Remodeling in Nonfracturable Surgical Valves." JACC: Cardiovascular Interventions 16, no. 17 (2023): 2185. http://dx.doi.org/10.1016/j.jcin.2023.07.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Poręba, Krystyna, Weronika Kowalczyk, Marcin K. Widomski, and Anna Musz-Pomorska. "Hydraulic characteristic of selected installation valves installed on various pipes materials." E3S Web of Conferences 59 (2018): 00023. http://dx.doi.org/10.1051/e3sconf/20185900023.

Pełny tekst źródła
Streszczenie:
Presented studies covered determination of minor pressure losses and values of minor loss coefficients for two selected installation valves: water control globe valve and angle valve, both DN 15. The tested valves were installed on three pipes, including PP 20x3.4 mm, PEX-Al-PEX 16x2.0 mm and Cu 15x1.0 mm. In order to reflect the real operating conditions of the angle valve, the elastic PVC pipe was used. Our researches were performed on the laboratory installation, for the variable flow rate. The obtained results of laboratory studies showed the clear dependence between minor pressure loss an
Style APA, Harvard, Vancouver, ISO itp.
17

Kciuk, Sławomir, and Paweł Martynowicz. "Special Application Magnetorheological Valve Numerical and Experimental Analysis." Solid State Phenomena 177 (July 2011): 102–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.177.102.

Pełny tekst źródła
Streszczenie:
The paper addresses analytical, numerical and experimental aspects of the design of magnetorheological (MR) fluid valve. Magnetic flux in valve’s cross-section is analysed with the help of finite element method (FEM) software. Based on the magnetic field intensity distribution within valve’s MR fluid annular gap, simulation model of the shock absorber equipped with newly designed MR valves is developed. Prototypes of MR valve are built and embedded in the stationary barrier of the rotary shock absorber, instead of standard, passive check valves. Simulation and preliminary experimental results
Style APA, Harvard, Vancouver, ISO itp.
18

Kumar Sah, Sanjay, Ramanandan Prasad Chaudhary, and Shirish Silwal. "Posterior Urethral Valves; Outcome Analysis after Endoscopic Valve Ablation." Annapurna Journal of Health Sciences 2, no. 1 (2022): 40–45. http://dx.doi.org/10.52910/ajhs.68.

Pełny tekst źródła
Streszczenie:
Introduction: Posterior urethral valves, a major male infra-vesical obstructive uropathy leading to chronic renal failure are most common paediatric urological emergencies with an incidence of 1:5000 -1:8000. Early diagnosis, management and follow up of these patients is challenging in low socio-economic countries like Nepal. This study evaluates the cases with posterior urethral valves and their outcomes after endoscopic valve ablation over a period of five years.
 Methods: In this five year retrospective study from January 2016 to December 2020, all the cases with posterior urethral val
Style APA, Harvard, Vancouver, ISO itp.
19

Egelhoff, W. F., T. Ha, R. D. K. Misra, et al. "Magnetoresistance values exceeding 21% in symmetric spin valves." Journal of Applied Physics 78, no. 1 (1995): 273–77. http://dx.doi.org/10.1063/1.360692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Vahl, Torsten P., Rebecca T. Hahn, and Jeffrey W. Moses. "Transcatheter Valve-in-Valve Implantation for Failing Bioprosthetic Triscupid Valves." Circulation 133, no. 16 (2016): 1537–39. http://dx.doi.org/10.1161/circulationaha.116.022160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wood, David Alexander, Ronen Gurvitch, Anson Cheung, et al. "TRANSCATHETER VALVE IN VALVE IMPLANTATION FOR FAILED BIOPROSTHETIC HEART VALVES." Journal of the American College of Cardiology 55, no. 10 (2010): A147.E1385. http://dx.doi.org/10.1016/s0735-1097(10)61386-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Webb, John G., David A. Wood, Jian Ye, et al. "Transcatheter Valve-in-Valve Implantation for Failed Bioprosthetic Heart Valves." Circulation 121, no. 16 (2010): 1848–57. http://dx.doi.org/10.1161/circulationaha.109.924613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gurvitch, Ronen, Anson Cheung, Jian Ye, et al. "Transcatheter Valve-in-Valve Implantation for Failed Surgical Bioprosthetic Valves." Journal of the American College of Cardiology 58, no. 21 (2011): 2196–209. http://dx.doi.org/10.1016/j.jacc.2011.09.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Fukui, Miho, Atsushi Okada, Marcus R. Burns, et al. "Deformation of transcatheter heart valves with mitral valve-in-valve." EuroIntervention 19, no. 11 (2023): e937-e947. http://dx.doi.org/10.4244/eij-d-23-00614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Camilleri, L. F., P. Bailly, B. J. Legault, B. Miguel, M. C. D'Agrosa-Boiteux, and C. M. de Riberolles. "Mitral and Mitro-Aortic Valve Replacement with Sorin Bicarbon Valves Compared with St. Jude Medical Valves." Cardiovascular Surgery 9, no. 3 (2001): 272–80. http://dx.doi.org/10.1177/096721090100900310.

Pełny tekst źródła
Streszczenie:
Objective: We assessed the clinical results of two bileaflet mechanical valves: the St. Jude Medical (SJM) and the Sorin Bicarbon (Sorin Bicarbon) used either in single mitral valve replacement (MVR) or in double, aortic and mitral, valve replacement (DVR). Methods: Between September 1990 and November 1995, 217 patients received either a St. Jude Medical ( n = 134) or a Sorin Bicarbon ( n = 86): 136 mitral valve replacement with 83 St. Jude Medical and 53 Sorin Bicarbon and 84 double valve replacement with 51 St. Jude Medical and 33 Sorin Bicarbon. There was no difference between both St. Jude
Style APA, Harvard, Vancouver, ISO itp.
26

Camilleri, L. "Mitral and mitro-aortic valve replacement with Sorin Bicarbon valves compared with St. Jude Medical valves." Cardiovascular Surgery 9, no. 3 (2001): 272–80. http://dx.doi.org/10.1016/s0967-2109(00)00136-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Simonato, Matheus, and Danny Dvir. "Transcatheter aortic valve replacement in failed surgical valves." Heart 105, Suppl 2 (2019): s38—s43. http://dx.doi.org/10.1136/heartjnl-2018-313517.

Pełny tekst źródła
Streszczenie:
Aortic valve-in-valve is a less invasive alternative to surgical redo in the treatment of failed bioprosthetic valves. While only inoperable patients underwent the procedure before, operators currently offer it to those at lower risk and worldwide experience is in the thousands. Early mortality has diminished in recent analyses and improvements in symptoms and quality of life have been documented. Main considerations with aortic valve-in-valve include elevated postprocedural gradients, coronary obstruction and leaflet thrombosis. Risk factors for each of these adverse events have been describe
Style APA, Harvard, Vancouver, ISO itp.
28

Bouhout, Ismail, and Nancy Poirier. "Truncal valve repair and other aortic pediatric valves." ASVIDE 6 (June 2019): 170. http://dx.doi.org/10.21037/asvide.2019.170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Bouhout, Ismail, and Nancy Poirier. "Truncal valve repair and other aortic pediatric valves." Annals of Cardiothoracic Surgery 8, no. 3 (2019): 436–37. http://dx.doi.org/10.21037/acs.2019.05.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Santarpino, Giuseppe, Steffen Pfeiffer, Joachim Sirch, Ferdinand Vogt, Giovanni Concistrè, and Theodor Fischlein. "Minimally invasive aortic valve replacement with Perceval valves." Journal of Cardiovascular Medicine 15, no. 3 (2014): 230–34. http://dx.doi.org/10.2459/jcm.0b013e328360936a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Svensson, Lars G., Brian P. Griffin, and Samir R. Kapadia. "Advances in Aortic Valve Repair, Particularly Bicuspid Valves." JAMA Cardiology 6, no. 8 (2021): 977. http://dx.doi.org/10.1001/jamacardio.2021.1245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Eikelboom, Rachel, Ricky Muller Moran, Weiang Yan, et al. "Current and future transcatheter aortic valve replacement valves." Current Opinion in Cardiology 37, no. 2 (2021): 173–79. http://dx.doi.org/10.1097/hco.0000000000000935.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Cheema, Faisal, Nasir Hussain, Alexander Kossar, and Gianluca Polvani. "Patents and Heart Valve Surgery - I: Mechanical Valves." Recent Patents on Cardiovascular Drug Discovery 8, no. 1 (2013): 17–34. http://dx.doi.org/10.2174/15748901112079990003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Cheema, Faisal, Alexander Kossar, Atiq Rehman, Fahad Younas, and Gianluca Polvani. "Patents and Heart Valve Surgery - II: Tissue Valves." Recent Patents on Cardiovascular Drug Discovery 8, no. 2 (2013): 127–42. http://dx.doi.org/10.2174/15748901113089990020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Reardon, Michael J., and Mark F. OʼBrien. "Allograft valves for aortic and mitral valve replacement." Current Opinion in Cardiology 12, no. 2 (1997): 114–22. http://dx.doi.org/10.1097/00001573-199703000-00005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kajbafzadeh, A. M., P. Jangouk, and C. Ahmadi Yazdi. "Anterior urethral valve associated with posterior urethral valves." Journal of Pediatric Urology 1, no. 6 (2005): 433–35. http://dx.doi.org/10.1016/j.jpurol.2005.05.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Stock, Ulrich A., and John E. Mayer. "Valves in Development for Autogenous Tissue Valve Replacement." Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual 2, no. 1 (1999): 51–64. http://dx.doi.org/10.1016/s1092-9126(99)70005-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Weber, Benedikt, Jérôme Robert, Agnieszka Ksiazek, et al. "Living-Engineered Valves for Transcatheter Venous Valve Repair." Tissue Engineering Part C: Methods 20, no. 6 (2014): 451–63. http://dx.doi.org/10.1089/ten.tec.2013.0187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Schäfers, Hans-Joachim, Takashi Kunihara, Peter Fries, Brigitte Brittner, and Diana Aicher. "Valve-preserving root replacement in bicuspid aortic valves." Journal of Thoracic and Cardiovascular Surgery 140, no. 6 (2010): S36—S40. http://dx.doi.org/10.1016/j.jtcvs.2010.07.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mankad, Sunil V., Gabriel S. Aldea, Natalie M. Ho, et al. "Transcatheter Mitral Valve Implantation in Degenerated Bioprosthetic Valves." Journal of the American Society of Echocardiography 31, no. 8 (2018): 845–59. http://dx.doi.org/10.1016/j.echo.2018.03.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Rheude, Tobias, Costanza Pellegrini, Jannik Lutz, et al. "Transcatheter Aortic Valve Replacement With Balloon-Expandable Valves." JACC: Cardiovascular Interventions 13, no. 22 (2020): 2631–38. http://dx.doi.org/10.1016/j.jcin.2020.07.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kazui, Teruhisa, Osamu Yamada, Makoto Yamagishi, Noriyasu Watanabe, and Sakuzo Komatsu. "Aortic valve replacement with omniscience and omnicarbon valves." Annals of Thoracic Surgery 52, no. 2 (1991): 236–43. http://dx.doi.org/10.1016/0003-4975(91)91343-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Banerjee, Amit, Mohammed Akhtar, Rakesh Gupta, and S. K. Khanna. "Prosthetic valve implantation in intact native mitral valves." Indian Journal of Thoracic and Cardiovascular Surgery 8, no. 1 (1992): 62–64. http://dx.doi.org/10.1007/bf02664128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

BESSHO, Yoshiharu, Yingzhe WANG, Kaoru UESUGI, and Keisuke MORISHIMA. "A micro check valve structure imitating venous valves." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2019 (2019): 2P1—G04. http://dx.doi.org/10.1299/jsmermd.2019.2p1-g04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Glauber, Mattia, Antonio Lio, Matteo Ferrarini, Antonio Miceli, Andrea Montisci, and Francesco Donatelli. "Minimally invasive aortic valve replacement with sutureless valves." Indian Journal of Thoracic and Cardiovascular Surgery 34, S2 (2017): 160–64. http://dx.doi.org/10.1007/s12055-017-0630-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Song, Ze-Zhou. "Valve Calcification and Patients With Bicuspid Aortic Valves." JAMA 301, no. 9 (2009): 935. http://dx.doi.org/10.1001/jama.2009.118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Abdel-Wahab, Mohamed, Julinda Mehilli, and Gert Richardt. "Bioprosthetic Valves for Transcatheter Aortic Valve Replacement—Reply." JAMA 312, no. 8 (2014): 845. http://dx.doi.org/10.1001/jama.2014.8375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Stefanescu Schmidt, Ada C., Aimee K. Armstrong, Jamil A. Aboulhosn, et al. "Transcatheter Pulmonary Valve Replacement With Balloon-Expandable Valves." JACC: Cardiovascular Interventions 17, no. 2 (2024): 231–44. http://dx.doi.org/10.1016/j.jcin.2023.10.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Qian, Jin-yuan, Zhi-xin Gao, Cong-wei Hou, and Zhi-jiang Jin. "A comprehensive review of cavitation in valves: mechanical heart valves and control valves." Bio-Design and Manufacturing 2, no. 2 (2019): 119–36. http://dx.doi.org/10.1007/s42242-019-00040-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Choudhary, Shiv Kumar, Sushant Srivastava, Horisk Chander, et al. "Early Experience with Homograft Valve Banking." Asian Cardiovascular and Thoracic Annals 5, no. 3 (1997): 137–40. http://dx.doi.org/10.1177/021849239700500303.

Pełny tekst źródła
Streszczenie:
Homograft cardiac valves have been shown to have several advantages over conventional prosthetic valves. From October 1993 through November 1996, 273 homografts (262 valved and 11 non-valved) were used in various procedures at the All India Institute of Medical Sciences, New Delhi, India. The recommendations of the American Association of Tissue Banks were followed for procurement, harvesting, and storage of the valves. One hundred and ninety-six hearts were procured yielding a total of 439 homograft valves; 192 were pulmonary homografts, 187 were aortic homografts, and 60 were mitral homograf
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!