Artykuły w czasopismach na temat „Van der Waals heterojunctions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Van der Waals heterojunctions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lei, Xunyong. "Optimization of Mechanically Assembled Van Der Waals Heterostructure Based On Solution Immersion and Hot Plate Heating." Journal of Physics: Conference Series 2152, no. 1 (2022): 012007. http://dx.doi.org/10.1088/1742-6596/2152/1/012007.
Pełny tekst źródłaWang, Shuai, Xiaoqiu Tang, Ezimetjan Alim, et al. "Type-II GaSe/MoS2 van der Waals Heterojunction for High-Performance Flexible Photodetector." Crystals 13, no. 11 (2023): 1602. http://dx.doi.org/10.3390/cryst13111602.
Pełny tekst źródłaGuo, Junnan, Xinyue Dai, Lishu Zhang, and Hui Li. "Electron Transport Properties of Graphene/WS2 Van Der Waals Heterojunctions." Molecules 28, no. 19 (2023): 6866. http://dx.doi.org/10.3390/molecules28196866.
Pełny tekst źródłaJiang, Xixi, Min Zhang, Liwei Liu, et al. "Multifunctional black phosphorus/MoS2 van der Waals heterojunction." Nanophotonics 9, no. 8 (2020): 2487–93. http://dx.doi.org/10.1515/nanoph-2019-0549.
Pełny tekst źródłaHan, Zeqi. "2D semiconductor Van Der Waals heterojunction applications." Highlights in Science, Engineering and Technology 87 (March 26, 2024): 209–13. http://dx.doi.org/10.54097/fffa0369.
Pełny tekst źródłaLuo, Hao, Bolun Wang, Enze Wang, Xuewen Wang, Yufei Sun, and Kai Liu. "High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions." Crystals 9, no. 6 (2019): 315. http://dx.doi.org/10.3390/cryst9060315.
Pełny tekst źródłaYan, Y., Z. Zeng, M. Huang, and P. Chen. "Van der waals heterojunctions for catalysis." Materials Today Advances 6 (June 2020): 100059. http://dx.doi.org/10.1016/j.mtadv.2020.100059.
Pełny tekst źródłaYao, Jiandong, and Guowei Yang. "Van der Waals heterostructures based on 2D layered materials: Fabrication, characterization, and application in photodetection." Journal of Applied Physics 131, no. 16 (2022): 161101. http://dx.doi.org/10.1063/5.0087503.
Pełny tekst źródłaYao, Jiandong, and Guowei Yang. "Van der Waals heterostructures based on 2D layered materials: Fabrication, characterization, and application in photodetection." Journal of Applied Physics 131, no. 16 (2022): 161101. http://dx.doi.org/10.1063/5.0087503.
Pełny tekst źródłaYang, Fan, Pascal Boulet, and Marie-Christine Record. "DFT Investigation of a Direct Z-Scheme Photocatalyst for Overall Water Splitting: Janus Ga2SSe/Bi2O3 Van Der Waals Heterojunction." Materials 18, no. 7 (2025): 1648. https://doi.org/10.3390/ma18071648.
Pełny tekst źródłaKong, Xiangyuan, Longwen Cao, Yuxing Shi, Zhouze Chen, Weilong Shi, and Xin Du. "Construction of S-Scheme 2D/2D Crystalline Carbon Nitride/BiOIO3 van der Waals Heterojunction for Boosted Photocatalytic Degradation of Antibiotics." Molecules 28, no. 13 (2023): 5098. http://dx.doi.org/10.3390/molecules28135098.
Pełny tekst źródłaYu, Junbo, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye, and Defa Wang. "Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production." Catalysts 15, no. 7 (2025): 691. https://doi.org/10.3390/catal15070691.
Pełny tekst źródłaChen, Xin, Wei-guo Pan, Rui-tang Guo, Xing Hu, Zhe-xu Bi, and Juan Wang. "Recent progress on van der Waals heterojunctions applied in photocatalysis." Journal of Materials Chemistry A 10, no. 14 (2022): 7604–25. http://dx.doi.org/10.1039/d2ta00500j.
Pełny tekst źródłaXia, Wanshun, Liping Dai, Peng Yu, et al. "Recent progress in van der Waals heterojunctions." Nanoscale 9, no. 13 (2017): 4324–65. http://dx.doi.org/10.1039/c7nr00844a.
Pełny tekst źródłaSun, Yinchang, Liming Xie, Zhao Ma, et al. "High-Performance Photodetectors Based on the 2D SiAs/SnS2 Heterojunction." Nanomaterials 12, no. 3 (2022): 371. http://dx.doi.org/10.3390/nano12030371.
Pełny tekst źródłaDi Bartolomeo, Antonio. "Emerging 2D Materials and Their Van Der Waals Heterostructures." Nanomaterials 10, no. 3 (2020): 579. http://dx.doi.org/10.3390/nano10030579.
Pełny tekst źródłaYang, Yaxiao, and Zhiguo Wang. "A two-dimensional MoS2/C3N broken-gap heterostructure, a first principles study." RSC Advances 9, no. 34 (2019): 19837–43. http://dx.doi.org/10.1039/c9ra02935d.
Pełny tekst źródłaZhu, Yonghao, Wei-Hai Fang, Angel Rubio, Run Long, and Oleg V. Prezhdo. "The twist angle has weak influence on charge separation and strong influence on recombination in the MoS2/WS2 bilayer: ab initio quantum dynamics." Journal of Materials Chemistry A 10, no. 15 (2022): 8324–33. http://dx.doi.org/10.1039/d1ta10788g.
Pełny tekst źródłaLi, Longhua, and Weidong Shi. "Tuning electronic structures of Sc2CO2/MoS2 polar–nonpolar van der Waals heterojunctions: interplay of internal and external electric fields." Journal of Materials Chemistry C 5, no. 32 (2017): 8128–34. http://dx.doi.org/10.1039/c7tc02384g.
Pełny tekst źródłaWang, Yong, Chengxin Zeng, Yichen Liu, et al. "Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation." Materials 15, no. 15 (2022): 5390. http://dx.doi.org/10.3390/ma15155390.
Pełny tekst źródłaKaterynchuk, V. M., O. S. Litvin, Z. R. Kudrynskyi, Z. D. Kovalyuk, I. G. Tkachuk, and B. V. Kushnir. "Topology and Photoelectric Properties of Heterostructure p-GaTe – n-InSe." Фізика і хімія твердого тіла 17, no. 4 (2016): 507–10. http://dx.doi.org/10.15330/pcss.17.4.507-510.
Pełny tekst źródłaWang, Cong, Shengxue Yang, Wenqi Xiong, et al. "Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p–n heterojunctions." Physical Chemistry Chemical Physics 18, no. 40 (2016): 27750–53. http://dx.doi.org/10.1039/c6cp04752a.
Pełny tekst źródłaLiu, Bingtong, Jin Wang, Shuji Zhao, et al. "Negative friction coefficient in microscale graphite/mica layered heterojunctions." Science Advances 6, no. 16 (2020): eaaz6787. http://dx.doi.org/10.1126/sciadv.aaz6787.
Pełny tekst źródłaZhou, Hong-Jun, Dong-Hui Xu, Qing-Hong Yang, Xiang-Yang Liu, Ganglong Cui, and Laicai Li. "Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations." Dalton Transactions 50, no. 19 (2021): 6725–34. http://dx.doi.org/10.1039/d1dt00291k.
Pełny tekst źródłaWang, Biao, Xukai Luo, Junli Chang, Xiaorui Chen, Hongkuan Yuan, and Hong Chen. "Efficient charge separation and visible-light response in bilayer HfS2-based van der Waals heterostructures." RSC Advances 8, no. 34 (2018): 18889–95. http://dx.doi.org/10.1039/c8ra03047b.
Pełny tekst źródłaBrowning, Robert, Paul Plachinda, Prasanna Padigi, Raj Solanki, and Sergei Rouvimov. "Growth of multiple WS2/SnS layered semiconductor heterojunctions." Nanoscale 8, no. 4 (2016): 2143–48. http://dx.doi.org/10.1039/c5nr08006a.
Pełny tekst źródłaLiu, B., X. X. Ren, Xian Zhang, Ping Li, Y. Dong, and Zhi-Xin Guo. "Electric field tunable multi-state tunnel magnetoresistances in 2D van der Waals magnetic heterojunctions." Applied Physics Letters 122, no. 15 (2023): 152408. http://dx.doi.org/10.1063/5.0139076.
Pełny tekst źródłaHu, Wei, and Jinlong Yang. "Two-dimensional van der Waals heterojunctions for functional materials and devices." Journal of Materials Chemistry C 5, no. 47 (2017): 12289–97. http://dx.doi.org/10.1039/c7tc04697a.
Pełny tekst źródłaSun, Cuicui, and Meili Qi. "Hybrid van der Waals heterojunction based on two-dimensional materials." Journal of Physics: Conference Series 2109, no. 1 (2021): 012012. http://dx.doi.org/10.1088/1742-6596/2109/1/012012.
Pełny tekst źródłaFukai, Masaya, Noriyuki Urakami, and Yoshio Hashimoto. "Electrical Properties in Ta2NiSe5 Film and van der Waals Heterojunction." Coatings 11, no. 12 (2021): 1485. http://dx.doi.org/10.3390/coatings11121485.
Pełny tekst źródłaYeh, Chao-Hui, Zheng-Yong Liang, Yung-Chang Lin, et al. "Scalable van der Waals Heterojunctions for High-Performance Photodetectors." ACS Applied Materials & Interfaces 9, no. 41 (2017): 36181–88. http://dx.doi.org/10.1021/acsami.7b10892.
Pełny tekst źródłaMondal, Chiranjit, Sourabh Kumar, and Biswarup Pathak. "Topologically protected hybrid states in graphene–stanene–graphene heterojunctions." Journal of Materials Chemistry C 6, no. 8 (2018): 1920–25. http://dx.doi.org/10.1039/c7tc05212j.
Pełny tekst źródłaMao, Yuliang, Zheng Guo, Jianmei Yuan, and Tao Sun. "1D/2D van der Waals Heterojunctions Composed of Carbon Nanotubes and a GeSe Monolayer." Nanomaterials 11, no. 6 (2021): 1565. http://dx.doi.org/10.3390/nano11061565.
Pełny tekst źródłaWei, Yiyang, Changyong Lan, Shuren Zhou, and Chun Li. "Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions." Applied Sciences 13, no. 19 (2023): 11037. http://dx.doi.org/10.3390/app131911037.
Pełny tekst źródłaYan, Shenlang, Hui Li, Chaofei Liu, Shaohui Xiang, and Mengqiu Long. "Strain regulation of the photoelectric performance of 2D InSe–AlAs vdW heterojunction: a DFT study." Journal of Physics D: Applied Physics 58, no. 7 (2024): 075002. https://doi.org/10.1088/1361-6463/ad97c7.
Pełny tekst źródłaBafekry, Asadollah, Daniela Gogova, Mohamed M. Fadlallah, et al. "Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials." Physical Chemistry Chemical Physics 23, no. 8 (2021): 4865–73. http://dx.doi.org/10.1039/d0cp06213h.
Pełny tekst źródłaLiu, Jie, Yaguang Guo, Fancy Qian Wang, and Qian Wang. "TiS3 sheet based van der Waals heterostructures with a tunable Schottky barrier." Nanoscale 10, no. 2 (2018): 807–15. http://dx.doi.org/10.1039/c7nr05606k.
Pełny tekst źródłaShi, Shun, Ya Feng, Bailing Li, et al. "Broadband and high-performance SnS2/FePS3/graphene van der Waals heterojunction photodetector." Applied Physics Letters 120, no. 8 (2022): 081101. http://dx.doi.org/10.1063/5.0083272.
Pełny tekst źródłaLi, Luji, Gaojie Zhang, Hao Wu, et al. "Tunable Photoresponse in 2D WTe2/MoS2 Van der Waals Heterojunctions." Journal of Physical Chemistry C 125, no. 19 (2021): 10639–45. http://dx.doi.org/10.1021/acs.jpcc.1c01162.
Pełny tekst źródłaZhu, Wenkai, Hailong Lin, Faguang Yan, et al. "Large Tunneling Magnetoresistance in van der Waals Ferromagnet/Semiconductor Heterojunctions." Advanced Materials 33, no. 51 (2021): 2104658. http://dx.doi.org/10.1002/adma.202104658.
Pełny tekst źródłaLiu, Yuanda, Fengqiu Wang, Yujie Liu, Xizhang Wang, Yongbing Xu, and Rong Zhang. "Charge transfer at carbon nanotube–graphene van der Waals heterojunctions." Nanoscale 8, no. 26 (2016): 12883–86. http://dx.doi.org/10.1039/c6nr03965k.
Pełny tekst źródłaHu, Wei, and Jinlong Yang. "First-principles study of two-dimensional van der Waals heterojunctions." Computational Materials Science 112 (February 2016): 518–26. http://dx.doi.org/10.1016/j.commatsci.2015.06.033.
Pełny tekst źródłaPanasci, Salvatore Ethan, Ioannis Deretzis, Emanuela Schilirò, et al. "Interface Properties of MoS2 van der Waals Heterojunctions with GaN." Nanomaterials 14, no. 2 (2024): 133. http://dx.doi.org/10.3390/nano14020133.
Pełny tekst źródłaZhu, Junqiang, Xiaofei Yue, Jiajun Chen, et al. "Ultrasensitive Phototransistor Based on Laser-Induced P-Type Doped WSe2/MoS2 Van der Waals Heterojunction." Applied Sciences 13, no. 10 (2023): 6024. http://dx.doi.org/10.3390/app13106024.
Pełny tekst źródłaLiu, Zixiang, Yaxiao Yang, Xiaoyu Yang, Guangqiang Yin, and Zhiguo Wang. "Tunable Band-Structures of MoSe2/C3N (M = Mo and W) van der Waals Heterojunctions." Materials Research Express, February 24, 2023. http://dx.doi.org/10.1088/2053-1591/acbf10.
Pełny tekst źródłaYiZhou Yao, 舒海波, Dan Cao, et al. "A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/cesium lead chloride van der Waals heterojunctions." Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220544.
Pełny tekst źródłaPan, panjinghua, Yu Wang, Danni Wang, et al. "Excitonic solar cells based on van der Waals heterojunctions of Janus III-VI chalcogenide monolayers." Nanotechnology, May 22, 2023. http://dx.doi.org/10.1088/1361-6528/acd788.
Pełny tekst źródłaChen, Hongjing, Yuntong Xing, Xia Wang, et al. "Electrical control of exchange bias in Fe3GaTe2/Fe3GeTe2 van der Waals heterostructures." Applied Physics Letters 126, no. 1 (2025). https://doi.org/10.1063/5.0235511.
Pełny tekst źródłaHuang Min, Li ZhanHai, and Cheng Fang. "Tunable electronic structures and interface contact in graphene/C<sub>3</sub>N van der Waals heterostructures." Acta Physica Sinica, 2023, 0. http://dx.doi.org/10.7498/aps.72.20230318.
Pełny tekst źródłaHao, Yulong, Shiwei Zhang, Chen Fan, et al. "Te nanomesh-monolayer WSe2 vertical van der Waals heterostructure for high-performance photodetector." Applied Physics Letters 126, no. 3 (2025). https://doi.org/10.1063/5.0247614.
Pełny tekst źródła