Gotowa bibliografia na temat „Variable prediction horizons”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Variable prediction horizons”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Variable prediction horizons"
Alamaniotis, Miltiadis, i Georgios Karagiannis. "Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power". International Journal of Monitoring and Surveillance Technologies Research 5, nr 3 (lipiec 2017): 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Pełny tekst źródłaAbduljabbar, Rusul L., Hussein Dia i Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction". Journal of Advanced Transportation 2021 (26.03.2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Pełny tekst źródłaMontaser, Eslam, José-Luis Díez i Jorge Bondia. "Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework". Sensors 21, nr 9 (4.05.2021): 3188. http://dx.doi.org/10.3390/s21093188.
Pełny tekst źródłaFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme i Nilton Curi. "Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models". Soil Research 58, nr 7 (2020): 683. http://dx.doi.org/10.1071/sr20136.
Pełny tekst źródłaGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath i Wolfgang C. Winkelmayer. "Predicting mortality over different time horizons: which data elements are needed?" Journal of the American Medical Informatics Association 24, nr 1 (29.06.2016): 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Pełny tekst źródłaLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou i Pau Herrero. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal". Sensors 19, nr 19 (8.10.2019): 4338. http://dx.doi.org/10.3390/s19194338.
Pełny tekst źródłaAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi i Constantinos V. Chrysikopoulos. "A hybrid machine-learning model for solar irradiance forecasting". Clean Energy 8, nr 1 (10.01.2024): 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Pełny tekst źródłaFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby i Juan José Vinagre Díaz. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction". Sensors 22, nr 12 (17.06.2022): 4565. http://dx.doi.org/10.3390/s22124565.
Pełny tekst źródłaWang, Haowei, Kin On Kwok i Steven Riley. "Forecasting influenza incidence as an ordinal variable using machine learning". Wellcome Open Research 9 (8.01.2024): 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Pełny tekst źródłaZjavka, Ladislav. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation". Energies 14, nr 22 (12.11.2021): 7581. http://dx.doi.org/10.3390/en14227581.
Pełny tekst źródłaRozprawy doktorskie na temat "Variable prediction horizons"
Amor, Yasmine. "Ιntelligent apprοach fοr trafic cοngestiοn predictiοn". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR129.
Pełny tekst źródłaTraffic congestion presents a critical challenge to urban areas, as the volume of vehicles continues to grow faster than the system’s overall capacity. This growth impacts economic activity, environmental sustainability, and overall quality of life. Although strategies for mitigating traffic congestion have seen improvements over the past few decades, many cities still struggle to manage it effectively. While various models have been developed to tackle this issue, existing approaches often fall short in providing real-time, localized predictions that can adapt to complex and dynamic traffic conditions. Most rely on fixed prediction horizons and lack the intelligent infrastructure needed for flexibility. This thesis addresses these gaps by proposing an intelligent, decentralized, infrastructure-based approach for traffic congestion estimation and prediction.We start by studying Traffic Estimation. We examine the possible congestion measures and data sources required for different contexts that may be studied. We establish a three-dimensional relationship between these axes. A rule-based system is developed to assist researchers and traffic operators in recommending the most appropriate congestion measures based on the specific context under study. We then proceed to Traffic Prediction, introducing our DECentralized COngestion esTimation and pRediction model using Intelligent Variable Message Signs (DECOTRIVMS). This infrastructure-based model employs intelligent Variable Message Signs (VMSs) to collect real-time traffic data and provide short-term congestion predictions with variable prediction horizons.We use Graph Attention Networks (GATs) due to their ability to capture complex relationships and handle graph-structured data. They are well-suited for modeling interactions between different road segments. In addition to GATs, we employ online learning methods, specifically, Stochastic Gradient Descent (SGD) and ADAptive GRAdient Descent (ADAGRAD). While these methods have been successfully used in various other domains, their application in traffic congestion prediction remains under-explored. In our thesis, we aim to bridge that gap by exploring their effectiveness within the context of real-time traffic congestion forecasting.Finally, we validate our model’s effectiveness through two case studies conducted in Muscat, Oman, and Rouen, France. A comprehensive comparative analysis is performed, evaluating various prediction techniques, including GATs, Graph Convolutional Networks (GCNs), SGD and ADAGRAD. The achieved results underscore the potential of DECOTRIVMS, demonstrating its potential for accurate and effective traffic congestion prediction across diverse urban contexts
Shekhar, Rohan Chandra. "Variable horizon model predictive control : robustness and optimality". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244210.
Pełny tekst źródłaCzęści książek na temat "Variable prediction horizons"
Huisman, Mischa, i Erjen Lefeber. "Online Motion Planning for All-Wheel Drive Autonomous Race Cars". W Lecture Notes in Mechanical Engineering, 185–92. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_27.
Pełny tekst źródłaHatanaka, Takeshi, Teruki Yamada, Masayuki Fujita, Shigeru Morimoto i Masayuki Okamoto. "Explicit Receding Horizon Control of Automobiles with Continuously Variable Transmissions". W Nonlinear Model Predictive Control, 561–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_46.
Pełny tekst źródłaBertipaglia, Alberto, Mohsen Alirezaei, Riender Happee i Barys Shyrokau. "A Learning-Based Model Predictive Contouring Control for Vehicle Evasive Manoeuvres". W Lecture Notes in Mechanical Engineering, 632–38. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_89.
Pełny tekst źródłaDe Nicolao, G., i R. Scattolini. "Properties of MBPC Algorithms". W Advances in Model-Based Predictive Control, 103–69. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198562924.003.0002.
Pełny tekst źródłaLima, Rodrigo de Souza, Leonardo Azevedo Scárdua i Gustavo Maia de Almeida. "Predicting temperatures inside a steel slab reheating furnace using Deep Learning". W A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-016.
Pełny tekst źródła"Cash Management". W Decision and Prediction Analysis Powered With Operations Research, 209–21. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-4179-7.ch011.
Pełny tekst źródłaMartínez, Blanca, Javier Sanchis i Sergio Garcia-Nieto. "A model independent constrained predictive control for the Furuta Pendulum". W XLIV Jornadas de Automática: libro de actas: Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura, 6, 7 y 8 de septiembre de 2023, Zaragoza, 323–28. Wyd. 2023. Servizo de Publicacións. Universidade da Coruña, 2023. http://dx.doi.org/10.17979/spudc.9788497498609.323.
Pełny tekst źródłaBandyopadhyay, Arindam. "Matrix Algebra and their Application in Risk Prediction and Risk Monitoring". W Basic Statistics for Risk Management in Banks and Financial Institutions, 119–40. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0005.
Pełny tekst źródłaKumar, Rajendra, Surbhit Shukla i C. S. Raghuvanshi. "Deep Learning Models for Predicting High and Low Tides With Gravitational Analysis". W Practice, Progress, and Proficiency in Sustainability, 35–46. IGI Global, 2023. http://dx.doi.org/10.4018/979-8-3693-1722-8.ch003.
Pełny tekst źródłaZickler Stefan i Veloso Manuela. "Variable Level-Of-Detail Motion Planning in Environments with Poorly Predictable Bodies". W Frontiers in Artificial Intelligence and Applications. IOS Press, 2010. https://doi.org/10.3233/978-1-60750-606-5-189.
Pełny tekst źródłaStreszczenia konferencji na temat "Variable prediction horizons"
Ngo, Tri, i Cornel Sultan. "Towards Automation of Helicopter Landings on Ship Decks Using Integer Programming and Model Predictive Control". W Vertical Flight Society 80th Annual Forum & Technology Display, 1–9. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12783.
Pełny tekst źródłaXiong, Weiliang, Xiangjun Xia, Haiping Du i Defeng He. "A Two-Stage Variable-Horizon Economic Model Predictive Control without Terminal Constraint". W 2024 IEEE 63rd Conference on Decision and Control (CDC), 4791–97. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886727.
Pełny tekst źródłaKellermann, Christoph, Eric Neumann i Joern Ostermann. "Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping". W 2022 International Conference on Control, Automation and Diagnosis (ICCAD). IEEE, 2022. http://dx.doi.org/10.1109/iccad55197.2022.9853884.
Pełny tekst źródłaDussi, Simone, Ryvo Octaviano i Pejman Shoeibi Omrani. "Bayesian Networks Applied to ESP Performance Monitoring and Forecasting". W SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210495-ms.
Pełny tekst źródłaAlevras, Ilias, Petros Karamanakos, Stefanos Manias i Ralph Kennel. "Variable switching point predictive torque control with extended prediction horizon". W 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015. http://dx.doi.org/10.1109/icit.2015.7125445.
Pełny tekst źródłaLi, Jiahui, Jian Zhang i Bo Wang. "Cooperative Control Strategy for Variable Speed Limit and Dynamic Hard Shoulder Running of Highway On-Ramp Merging Area". W 2024 International Conference on Smart Transportation Interdisciplinary Studies. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2025. https://doi.org/10.4271/2025-01-7207.
Pełny tekst źródłaGonzález, Cristóbal, i Alejandro Angulo. "Multistep–Finite–Control–Set Model Predictive Control with Variable–Step Prediction Horizon". W 2023 IEEE 8th Southern Power Electronics Conference (SPEC). IEEE, 2023. http://dx.doi.org/10.1109/spec56436.2023.10408051.
Pełny tekst źródłaAli, Ahmed M., i Dirk Söffker. "Real-Time Applicable Power Management of Multi-Source Fuel Cell Vehicles Using Situation-Based Model Predictive Control". W ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22383.
Pełny tekst źródłaLee, Tae-Kyung, i Zoran S. Filipi. "Control Oriented Modeling and Nonlinear Model Predictive Control of Advanced SI Engine System". W ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4024.
Pełny tekst źródłaFernando, Eranga, Syed Imtiaz, Salim Ahmed, Kevin Murrant, Robert Gash, Mohammed Islam i Hasanat Zaman. "Obstacle Avoidance Nonlinear Model Predictive Controller for Autonomous Surface Vessels With Variable Sampling Time Prediction". W ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-126778.
Pełny tekst źródłaRaporty organizacyjne na temat "Variable prediction horizons"
Clements, Michael, Robert W. Rich i Joseph Tracy. An Investigation into the Uncertainty Revision Process of Professional Forecasters. Federal Reserve Bank of Cleveland, wrzesień 2024. http://dx.doi.org/10.26509/frbc-wp-202419.
Pełny tekst źródłaShaver, Greg, i Miles Droege. Develop and Deploy a Safe Truck Platoon Testing Protocol for the Purdue ARPA-E Project in Indiana. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317314.
Pełny tekst źródła