Gotowa bibliografia na temat „Vibration bandgap”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Vibration bandgap”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Vibration bandgap"
Anigbogu, Winner, and Hamzeh Bardaweel. "A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting." Shock and Vibration 2020 (June 13, 2020): 1–12. http://dx.doi.org/10.1155/2020/4063025.
Pełny tekst źródłaDong, Xingjian, Shuo Wang, Anshuai Wang, et al. "Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial." Applied Mathematics and Mechanics 45, no. 10 (2024): 1841–56. http://dx.doi.org/10.1007/s10483-024-3168-7.
Pełny tekst źródłaLiu, Tengfei, and Zhen Lei. "Low-frequency bandgap and tension-compression to twist mode transition of a novel pull-rotation chiral structure." Journal of Physics D: Applied Physics 58, no. 22 (2025): 225301. https://doi.org/10.1088/1361-6463/add1eb.
Pełny tekst źródłaYang, Fan, Zhaoyang Ma, and Xingming Guo. "Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression." Applied Mathematics and Mechanics 46, no. 1 (2025): 1–24. https://doi.org/10.1007/s10483-025-3204-7.
Pełny tekst źródłaHajhosseini, Mohammad. "Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method." Journal of Vibration and Control 26, no. 19-20 (2020): 1708–20. http://dx.doi.org/10.1177/1077546320902549.
Pełny tekst źródłaGuo, Peng, and Qizheng Zhou. "An Analytical, Numerical, and Experimental Investigation on Transverse Vibrations of a Finite Locally Resonant Beam." Shock and Vibration 2022 (June 13, 2022): 1–17. http://dx.doi.org/10.1155/2022/6875718.
Pełny tekst źródłaMuhammad, Shoaib, Shuai Wang, Fengming Li, and Chuanzeng Zhang. "Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms." Journal of Vibration and Control 26, no. 15-16 (2020): 1309–18. http://dx.doi.org/10.1177/1077546319895630.
Pełny tekst źródłaWei, Wei, Feng Guan, and Xin Fang. "A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures." Applied Mathematics and Mechanics 45, no. 7 (2024): 1171–88. http://dx.doi.org/10.1007/s10483-024-3160-6.
Pełny tekst źródłaGuo, Zhiwei, Buliang Xie, Meiping Sheng, and Hao Zeng. "Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators." Applied Sciences 14, no. 4 (2024): 1467. http://dx.doi.org/10.3390/app14041467.
Pełny tekst źródłaYong, Jiawang, Wanting Li, Xiaojun Hu, Zhishuai Wan, Yiyao Dong, and Nenglian Feng. "Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial." Applied Sciences 14, no. 3 (2024): 1028. http://dx.doi.org/10.3390/app14031028.
Pełny tekst źródłaRozprawy doktorskie na temat "Vibration bandgap"
Zhang, Runze. "Modeling of coupled vibration systems with fluid-structure interaction." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST136.
Pełny tekst źródłaRodrigues, Cunha Leandro. "Robust bandgaps for vibration control in periodic structures." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD060.
Pełny tekst źródłaZheng, Xuqian. "Ultra-Wide Bandgap Crystals for Resonant Nanoelectromechanical Systems (NEMS)." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554765522327938.
Pełny tekst źródłaPyskir, Adrien. "Application de métamatériaux aux problématiques vibroacoustiques automobiles." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEC011.
Pełny tekst źródłaMoreira, Fernando Jose de Oliveira. "Um controlador H 'infinito' alfa de Banda limitada para o controle ativo de vibração estrutural." [s.n.], 1998. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263222.
Pełny tekst źródłaGehring, Junior Waldemar [UNESP]. "Monitoramento da deflexão de serras de fita contínua como proposta de avaliação da qualidade de peças serradas de madeira." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144189.
Pełny tekst źródłaRatnaparkhe, Amol. "FIRST PRINCIPLES STUDY OF ELECTRONIC ANDVIBRATIONAL PROPERTIES OF WIDE BAND GAPOXIDE AND NITRIDE SEMICONDUCTORS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619606222502271.
Pełny tekst źródłaTsai, Meng-Huang, and 蔡孟皇. "Structural analysis and vibration control of high-speed bandsaw." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/hgg5n6.
Pełny tekst źródła(6532391), Nicolas Guarin-Zapata. "Modeling and Analysis of Wave and Damaging Phenomena in Biological and Bioinspired Materials." Thesis, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Vibration bandgap"
Yuan, Weiting, and Qibo Mao. "Experimental Study of Bending Vibration Bandgaps for an Acoustic Metamaterial Beam." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8864-8_26.
Pełny tekst źródłaDeng, Jie. "Low-frequency bandgaps by topological acoustic black holes." In Phonons - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005765.
Pełny tekst źródłaSahu, Rajesh, S. K. Jain, and Balram Tripathi. "A Comparative Study on Visible Light Induced Photocatalytic Activity of MWCNTs Decorated Sulfide Based (ZnS & CdS) Nano Photocatalysts." In Advanced Materials and Nano Systems: Theory and Experiment - Part 2. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049961122020013.
Pełny tekst źródłaKhalid, S. "Advanced Electric Propulsion Systems for Hybrid Electric Vehicles." In Advances in Mechatronics and Mechanical Engineering. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-5797-2.ch001.
Pełny tekst źródłaThomas, Michael E. "Optical Propagation in Solids." In Optical Propagation in Linear Media. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195091618.003.0013.
Pełny tekst źródłaStreszczenia konferencji na temat "Vibration bandgap"
Singhapurage, Helani A. S., Dinusha M. Senarathna, Jeremy Sylvester, Chandra P. Neupane, and F. Ganikhanov. "Ultrafast Coherent Raman Study of Lattice Vibration Dynamics in Wide-bandgap Semiconductors." In CLEO: Applications and Technology. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.127.
Pełny tekst źródłaLiu, Quanxing. "Flexural wave bandgap and vibration reduction of a metabeam with 2DOF resonators." In 5th International Conference on Mechanical Engineering and Materials (ICMEM 2024), edited by Jinyang Xu and Gupta Manoj. SPIE, 2025. https://doi.org/10.1117/12.3060067.
Pełny tekst źródłaAnigbogu, Winner, and Hamzeh Bardaweel. "Concurrent Passive Broadband Vibration Suppression and Energy Harvesting Using a Dual-Purpose Magnetoelastic Metamaterial Structure: Experimental Validation and Modeling." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-67652.
Pełny tekst źródłaChavan, Shantanu, and Vijaya V. N. Sriram Malladi. "Programmable Bandgaps in Meta-Structures With Dynamic Vibration Resonators." In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-112818.
Pełny tekst źródłaSugino, Christopher, Stephen Leadenham, Massimo Ruzzene, and Alper Erturk. "Modal Analysis of Bandgap Formation for Vibration Attenuation in Locally Resonant Finite Beams." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60552.
Pełny tekst źródłaLeGrande, Joshua, Mohammad Bukhari, and Oumar Barry. "Topological Properties and Localized Vibration Modes in Quasiperiodic Metamaterials With Electromechanical Local Resonators." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90025.
Pełny tekst źródłaAstudillo, Diego, and Rafael O. Ruiz. "Resonator-Based Piezoelectric Metastructures: Efficient Bandgap Estimation and Parametric Analysis." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-110579.
Pełny tekst źródłaKaczmarek, Marcin B., Vivek Gupta, and S. Hassan HosseinNia. "Active Piezoelectric Metastructures: Relationship of Bandgap Formation With Unit Cell Number and Modal Behaviour." In ASME 2024 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2024. https://doi.org/10.1115/imece2024-144807.
Pełny tekst źródłaSong, Yihao, and Yanfeng Shen. "Shape Memory Metamaterials With Adaptive Bandgaps for Ultra-Wide Frequency Spectrum Vibration Control." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10902.
Pełny tekst źródłaSugino, Christopher, Stephen Leadenham, Massimo Ruzzene, and Alper Erturk. "Electroelastic Bandgap Formation in Locally Resonant Metamaterial Beams With Piezoelectric Shunts: A Modal Analysis Approach." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9282.
Pełny tekst źródła