Artykuły w czasopismach na temat „Vibration bandgap”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Vibration bandgap”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Anigbogu, Winner, and Hamzeh Bardaweel. "A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting." Shock and Vibration 2020 (June 13, 2020): 1–12. http://dx.doi.org/10.1155/2020/4063025.
Pełny tekst źródłaDong, Xingjian, Shuo Wang, Anshuai Wang, et al. "Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial." Applied Mathematics and Mechanics 45, no. 10 (2024): 1841–56. http://dx.doi.org/10.1007/s10483-024-3168-7.
Pełny tekst źródłaLiu, Tengfei, and Zhen Lei. "Low-frequency bandgap and tension-compression to twist mode transition of a novel pull-rotation chiral structure." Journal of Physics D: Applied Physics 58, no. 22 (2025): 225301. https://doi.org/10.1088/1361-6463/add1eb.
Pełny tekst źródłaYang, Fan, Zhaoyang Ma, and Xingming Guo. "Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression." Applied Mathematics and Mechanics 46, no. 1 (2025): 1–24. https://doi.org/10.1007/s10483-025-3204-7.
Pełny tekst źródłaHajhosseini, Mohammad. "Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method." Journal of Vibration and Control 26, no. 19-20 (2020): 1708–20. http://dx.doi.org/10.1177/1077546320902549.
Pełny tekst źródłaGuo, Peng, and Qizheng Zhou. "An Analytical, Numerical, and Experimental Investigation on Transverse Vibrations of a Finite Locally Resonant Beam." Shock and Vibration 2022 (June 13, 2022): 1–17. http://dx.doi.org/10.1155/2022/6875718.
Pełny tekst źródłaMuhammad, Shoaib, Shuai Wang, Fengming Li, and Chuanzeng Zhang. "Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms." Journal of Vibration and Control 26, no. 15-16 (2020): 1309–18. http://dx.doi.org/10.1177/1077546319895630.
Pełny tekst źródłaWei, Wei, Feng Guan, and Xin Fang. "A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures." Applied Mathematics and Mechanics 45, no. 7 (2024): 1171–88. http://dx.doi.org/10.1007/s10483-024-3160-6.
Pełny tekst źródłaGuo, Zhiwei, Buliang Xie, Meiping Sheng, and Hao Zeng. "Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators." Applied Sciences 14, no. 4 (2024): 1467. http://dx.doi.org/10.3390/app14041467.
Pełny tekst źródłaYong, Jiawang, Wanting Li, Xiaojun Hu, Zhishuai Wan, Yiyao Dong, and Nenglian Feng. "Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial." Applied Sciences 14, no. 3 (2024): 1028. http://dx.doi.org/10.3390/app14031028.
Pełny tekst źródłaHan, Wenwen, and Shui Wan. "Flexural Wave Bandgaps in a Prestressed Multisupported Timoshenko Beam with Periodic Inerter-Based Dynamic Vibration Absorbers." Sustainability 15, no. 4 (2023): 3680. http://dx.doi.org/10.3390/su15043680.
Pełny tekst źródłaLei, Xiaofei, Peng Chen, Heping Hou, Shanhui Liu, and Peng Liu. "Longitudinal vibration wave in the composite elastic metamaterials containing Bragg structure and local resonator." International Journal of Modern Physics B 34, no. 26 (2020): 2050232. http://dx.doi.org/10.1142/s021797922050232x.
Pełny tekst źródłaXining, Zhao, Zhang Yongwang, Li Bo, Shen Chuangshi, Li Zewei, and Zhou Bo. "Active tuning of the vibration and wave propagation properties in electromechanical metamaterial beam." Journal of Applied Physics 132, no. 23 (2022): 234501. http://dx.doi.org/10.1063/5.0122301.
Pełny tekst źródłaZhang, Shengke, Denghui Qian, Zhiwen Zhang, and Haoran Ge. "Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure." Materials 17, no. 7 (2024): 1702. http://dx.doi.org/10.3390/ma17071702.
Pełny tekst źródłaQiang, Chenxu, Yuxin Hao, Wei Zhang, Jinqiang Li, Shaowu Yang, and Yuteng Cao. "Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam." Applied Mathematics and Mechanics 42, no. 11 (2021): 1555–70. http://dx.doi.org/10.1007/s10483-021-2790-7.
Pełny tekst źródłaJiang, Haowen, and Shuang Yang. "Bending wave bandgap control of a local resonant pipe with a honeycomb thin-wall structure." Journal of Physics: Conference Series 3021, no. 1 (2025): 012070. https://doi.org/10.1088/1742-6596/3021/1/012070.
Pełny tekst źródłaSUN, Xuyang, Zhong WANG, Jingjun ZHOU, Qian WANG, and Jingjian XU. "Study on vibration bandgap characteristics of a cantilever beam type local resonance unit." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 42, no. 4 (2024): 643–51. http://dx.doi.org/10.1051/jnwpu/20244240643.
Pełny tekst źródłaYang, Fan, Zhaoyang Ma, and Xingming Guo. "Bandgap characteristics of the two-dimensional missing rib lattice structure." Applied Mathematics and Mechanics 43, no. 11 (2022): 1631–40. http://dx.doi.org/10.1007/s10483-022-2923-6.
Pełny tekst źródłaWu, Xudong, Jiaxing Luo, Yixiang Qu, and Cong Zhang. "Bandgap prediction of single cantilever beam piezoelectric phononic crystals." Journal of the Acoustical Society of America 157, no. 4 (2025): 2570–81. https://doi.org/10.1121/10.0036387.
Pełny tekst źródłaZhang, Zhen, Qin Wang, Yu Su, Junwei Tian, Xingang Wang, and Shoumin Wang. "The influence of component defect states on bandgaps of 2D composite beam frame structures." AIP Advances 13, no. 4 (2023): 045220. http://dx.doi.org/10.1063/5.0120259.
Pełny tekst źródłaFayyaz, Salem Bashmal, Aamer Nazir, Sikandar Khan, and Abdulrahman Alofi. "Damping Optimization and Energy Absorption of Mechanical Metamaterials for Enhanced Vibration Control Applications: A Critical Review." Polymers 17, no. 2 (2025): 237. https://doi.org/10.3390/polym17020237.
Pełny tekst źródłaLiu, Jianing, Jinqiang Li, and Ying Wu. "Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method." Applied Mathematics and Mechanics 45, no. 10 (2024): 1807–20. http://dx.doi.org/10.1007/s10483-024-3167-8.
Pełny tekst źródłaTan, Xinyu, Bolong Jiang, Chunyu Qi, et al. "Method for Controlling Full-Frequency Band Environment Vibration by Coordinating Metro Vibration Sources and Propagation Paths." Applied Sciences 13, no. 24 (2023): 12979. http://dx.doi.org/10.3390/app132412979.
Pełny tekst źródłaAnnessi, A., V. Zega, P. Chiariotti, M. Martarelli, and P. Castellini. "An innovative wide and low-frequency bandgap metastructure for vibration isolation." Journal of Applied Physics 132, no. 8 (2022): 084903. http://dx.doi.org/10.1063/5.0102410.
Pełny tekst źródłaKao, De-Wei, Jung-San Chen, and Yu-Bin Chen. "Bandgap prediction for a beam containing membrane-arch-mass resonators." Journal of Applied Physics 132, no. 24 (2022): 244902. http://dx.doi.org/10.1063/5.0118530.
Pełny tekst źródłaDeng, Jianjiao, Jiawei Wu, Xi Chen, et al. "Tandem Neural Network Based Design of Acoustic Metamaterials for Low-Frequency Vibration Reduction in Automobiles." Crystals 15, no. 8 (2025): 676. https://doi.org/10.3390/cryst15080676.
Pełny tekst źródłaGao, Yating, and Hui Wang. "Metamaterial with Perforated Auxetic Core for Ultra-Low-Frequency Vibration Isolation of Lamb Waves." Materials 18, no. 12 (2025): 2857. https://doi.org/10.3390/ma18122857.
Pełny tekst źródłaGao, Weirui, Qian Zhang, Jie Sun, and Kai Guo. "A novel 3D-printed magnesium alloy phononic crystal with broadband bandgap." Journal of Applied Physics 133, no. 8 (2023): 085103. http://dx.doi.org/10.1063/5.0135770.
Pełny tekst źródłaLi, Chengfei, Zhaobo Chen, and Yinghou Jiao. "Vibration and Bandgap Behavior of Sandwich Pyramid Lattice Core Plate with Resonant Rings." Materials 16, no. 7 (2023): 2730. http://dx.doi.org/10.3390/ma16072730.
Pełny tekst źródłaGuo, Peng, Qi-zheng Zhou, and Zi-yin Luo. "Theoretical and experimental investigation on the low-frequency vibro-acoustic characteristics of a finite locally resonant plate." AIP Advances 12, no. 11 (2022): 115201. http://dx.doi.org/10.1063/5.0121331.
Pełny tekst źródłaLi, Wenzhen, Quan Zhou, Zanxu Chen, Xi Ye, and Hongfu Wang. "Theoretical modeling and vibration characteristics analysis of acoustic black hole beam." Journal of Physics: Conference Series 2825, no. 1 (2024): 012032. http://dx.doi.org/10.1088/1742-6596/2825/1/012032.
Pełny tekst źródłaLiu, Jiayang, and Shu Li. "A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties." Materials 16, no. 24 (2023): 7669. http://dx.doi.org/10.3390/ma16247669.
Pełny tekst źródłaLi, Shuqin, Jing Song, and Jingshun Ren. "Design of a Functionally Graded Material Phonon Crystal Plate and Its Application in a Bridge." Applied Sciences 13, no. 13 (2023): 7677. http://dx.doi.org/10.3390/app13137677.
Pełny tekst źródłaAnigbogu, Winner, and Hamzeh Bardaweel. "A Comparative Study and Analysis of Layered-Beam and Single-Beam Metamaterial Structures: Transmissibility Bandgap Development." Applied Sciences 12, no. 15 (2022): 7550. http://dx.doi.org/10.3390/app12157550.
Pełny tekst źródłaZhao, Caiyou, Liuchong Wang, Dongya Liu, Xing Gao, Xi Sheng, and Wang Ping. "Vibration control mechanism of the metabarrier under train load via numerical simulation." Journal of Vibration and Control 25, no. 19-20 (2019): 2553–66. http://dx.doi.org/10.1177/1077546319866036.
Pełny tekst źródłaGuo, Zhiwei, and Meiping Sheng. "Bandgap of flexural wave in periodic bi-layer beam." Journal of Vibration and Control 24, no. 14 (2016): 2970–85. http://dx.doi.org/10.1177/1077546316640975.
Pełny tekst źródłaWu, Kun, Haiyan Hu, and Lifeng Wang. "Optimization of a type of elastic metamaterial for broadband wave suppression." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, no. 2251 (2021): 20210337. http://dx.doi.org/10.1098/rspa.2021.0337.
Pełny tekst źródłaAlimohammadi, Hossein, Kristina Vassiljeva, S. Hassan HosseinNia, and Eduard Petlenkov. "Bandgap Dynamics in Locally Resonant Metastructures: A General Theory of Internal Resonator Coupling." Applied Sciences 14, no. 6 (2024): 2447. http://dx.doi.org/10.3390/app14062447.
Pełny tekst źródłaAkl, Wael, Hajid Alsupie, Sadok Sassi, and Amr M. Baz. "Vibration of Periodic Drill-Strings with Local Sources of Resonance." Vibration 4, no. 3 (2021): 586–601. http://dx.doi.org/10.3390/vibration4030034.
Pełny tekst źródłaHe, Qiang, Jingkai Nie, Yu Han, Yi Tian, Chao Fan, and Guangxu Dong. "Investigation on Low Frequency Bandgap of Coupled Double Beam with Quasi-Zero Stiffness for Power Transformer Vibration Control." Shock and Vibration 2022 (December 31, 2022): 1–14. http://dx.doi.org/10.1155/2022/5029189.
Pełny tekst źródłaI, Boris, and Jaesun Lee. "Numerical and Experimental Study of Low-Frequency Membrane Damper for Tube Vibration Suppression." Actuators 13, no. 3 (2024): 106. http://dx.doi.org/10.3390/act13030106.
Pełny tekst źródłaYong, Jiawang, Yiyao Dong, Zhishuai Wan, Wanting Li, and Yanyan Chen. "Collaborative Design of Static and Vibration Properties of a Novel Re-Entrant Honeycomb Metamaterial." Applied Sciences 14, no. 4 (2024): 1497. http://dx.doi.org/10.3390/app14041497.
Pełny tekst źródłaHan, Donghai, Qi Jia, Yuanyu Gao, et al. "Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes." Applied Mathematics and Mechanics 45, no. 10 (2024): 1821–40. http://dx.doi.org/10.1007/s10483-024-3166-8.
Pełny tekst źródłaShu, Hai-Sheng, Xing-Guo Wang, Ru Liu, et al. "Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method." International Journal of Modern Physics B 29, no. 24 (2015): 1550176. http://dx.doi.org/10.1142/s0217979215501763.
Pełny tekst źródłaGao, Xu, Jiyuan Wei, Jiajing Huo, Zhishuai Wan, and Ying Li. "The Vibration Isolation Design of a Re-Entrant Negative Poisson’s Ratio Metamaterial." Applied Sciences 13, no. 16 (2023): 9442. http://dx.doi.org/10.3390/app13169442.
Pełny tekst źródłaGao, Xing-Lin, Xiao-Wei Sun, Ren-Sheng Li, Mao-Ting Tan, Ting Song, and Yi-Wen Wang. "The low-frequency bandgap characteristics of phononic crystal isolators with multi-hole." Journal of Vibration and Control, June 17, 2024. http://dx.doi.org/10.1177/10775463241262121.
Pełny tekst źródłaChen, Zexin, Shida Jin, Shuaishuai Sun, et al. "A new inerter-based acoustic metamaterial MRE isolator with low-frequency bandgap." Smart Materials and Structures, November 2, 2024. http://dx.doi.org/10.1088/1361-665x/ad8e1e.
Pełny tekst źródłaZhang, Benben, Linchang Miao, Tianshuang Geng, and Jing Zhang. "Comparative analysis of bandgap characteristics of single-and double-layer ring-like multi-oscillator locally resonant phononic crystals." Modern Physics Letters B, November 27, 2024. http://dx.doi.org/10.1142/s021798492550054x.
Pełny tekst źródłaDas, Sachchidanand, Kush Dwivedi, Sabareesh Geetha Rajasekharan, and Yendluri V. Daseswara Rao. "Vibration attenuation and bandgap characteristics in plates with periodic cavities." Journal of Vibration and Control, June 5, 2020, 107754632093374. http://dx.doi.org/10.1177/1077546320933745.
Pełny tekst źródłaZheng, Xuan, Yabin Jin, Runcheng Cai, Timon Rabczuk, Hehua Zhu, and Xiaoying Zhuang. "Elastic surface wave attenuation in layered soil by metastructures." Low-carbon Materials and Green Construction 2, no. 1 (2024). http://dx.doi.org/10.1007/s44242-024-00037-7.
Pełny tekst źródła