Artykuły w czasopismach na temat „Visual Odometry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Visual Odometry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sun, Qian, Ming Diao, Yibing Li, and Ya Zhang. "An improved binocular visual odometry algorithm based on the Random Sample Consensus in visual navigation systems." Industrial Robot: An International Journal 44, no. 4 (2017): 542–51. http://dx.doi.org/10.1108/ir-11-2016-0280.
Pełny tekst źródłaSrinivasan, M., S. Zhang, and N. Bidwell. "Visually mediated odometry in honeybees." Journal of Experimental Biology 200, no. 19 (1997): 2513–22. http://dx.doi.org/10.1242/jeb.200.19.2513.
Pełny tekst źródłaWang, Chenggong, Gen Li, Ruiqi Wang, and Lin Li. "Wheeled Robot Visual Odometer Based on Two-dimensional Iterative Closest Point Algorithm." Journal of Physics: Conference Series 2504, no. 1 (2023): 012002. http://dx.doi.org/10.1088/1742-6596/2504/1/012002.
Pełny tekst źródłaScaramuzza, Davide, and Friedrich Fraundorfer. "Visual Odometry [Tutorial]." IEEE Robotics & Automation Magazine 18, no. 4 (2011): 80–92. http://dx.doi.org/10.1109/mra.2011.943233.
Pełny tekst źródłaAn, Lifeng, Xinyu Zhang, Hongbo Gao, and Yuchao Liu. "Semantic segmentation–aided visual odometry for urban autonomous driving." International Journal of Advanced Robotic Systems 14, no. 5 (2017): 172988141773566. http://dx.doi.org/10.1177/1729881417735667.
Pełny tekst źródłaCIOCOIU, Titus, Florin MOLDOVEANU, and Caius SULIMAN. "CAMERA CALIBRATION FOR VISUAL ODOMETRY SYSTEM." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (2016): 227–32. http://dx.doi.org/10.19062/2247-3173.2016.18.1.30.
Pełny tekst źródłaWang, Jiabin, and Faqin Gao. "Improved visual inertial odometry based on deep learning." Journal of Physics: Conference Series 2078, no. 1 (2021): 012016. http://dx.doi.org/10.1088/1742-6596/2078/1/012016.
Pełny tekst źródłaBorges, Paulo Vinicius Koerich, and Stephen Vidas. "Practical Infrared Visual Odometry." IEEE Transactions on Intelligent Transportation Systems 17, no. 8 (2016): 2205–13. http://dx.doi.org/10.1109/tits.2016.2515625.
Pełny tekst źródłaGonzalez, Ramon, Francisco Rodriguez, Jose Luis Guzman, Cedric Pradalier, and Roland Siegwart. "Combined visual odometry and visual compass for off-road mobile robots localization." Robotica 30, no. 6 (2011): 865–78. http://dx.doi.org/10.1017/s026357471100110x.
Pełny tekst źródłaAguiar, André, Filipe Santos, Armando Jorge Sousa, and Luís Santos. "FAST-FUSION: An Improved Accuracy Omnidirectional Visual Odometry System with Sensor Fusion and GPU Optimization for Embedded Low Cost Hardware." Applied Sciences 9, no. 24 (2019): 5516. http://dx.doi.org/10.3390/app9245516.
Pełny tekst źródłaMartínez-García, Edgar Alonso, Joaquín Rivero-Juárez, Luz Abril Torres-Méndez, and Jorge Enrique Rodas-Osollo. "Divergent trinocular vision observers design for extended Kalman filter robot state estimation." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233, no. 5 (2018): 524–47. http://dx.doi.org/10.1177/0959651818800908.
Pełny tekst źródłaAlapetite, Alexandre, Zhongyu Wang, John Paulin Hansen, Marcin Zajączkowski, and Mikołaj Patalan. "Comparison of Three Off-the-Shelf Visual Odometry Systems." Robotics 9, no. 3 (2020): 56. http://dx.doi.org/10.3390/robotics9030056.
Pełny tekst źródłaBazeille, Stephane, Emmanuel Battesti, and David Filliat. "A Light Visual Mapping and Navigation Framework for Low-Cost Robots." Journal of Intelligent Systems 24, no. 4 (2015): 505–24. http://dx.doi.org/10.1515/jisys-2014-0116.
Pełny tekst źródłaZhu, Zihan, Yi Zhang, Weijun Wang, Wei Feng, Haowen Luo, and Yaojie Zhang. "Adaptive Adjustment of Factor’s Weight for a Multi-Sensor SLAM." Journal of Physics: Conference Series 2451, no. 1 (2023): 012004. http://dx.doi.org/10.1088/1742-6596/2451/1/012004.
Pełny tekst źródłaYuan, Shuangjie, Jun Zhang, Yujia Lin, and Lu Yang. "Hybrid self-supervised monocular visual odometry system based on spatio-temporal features." Electronic Research Archive 32, no. 5 (2024): 3543–68. http://dx.doi.org/10.3934/era.2024163.
Pełny tekst źródłaJeon, Hyun-Ho, Jin-Hyung Kim, and Yun-Ho Ko. "RAFSet (Robust Aged Feature Set)-Based Monocular Visual Odometry." Journal of Institute of Control, Robotics and Systems 23, no. 12 (2017): 1063–69. http://dx.doi.org/10.5302/j.icros.2017.17.0160.
Pełny tekst źródłaJiang, Feng, Jianjun Gu, Shiqiang Zhu, Te Li, and Xinliang Zhong. "Visual Odometry Based 3D-Reconstruction." Journal of Physics: Conference Series 1961, no. 1 (2021): 012074. http://dx.doi.org/10.1088/1742-6596/1961/1/012074.
Pełny tekst źródłaComport, A. I., E. Malis, and P. Rives. "Real-time Quadrifocal Visual Odometry." International Journal of Robotics Research 29, no. 2-3 (2010): 245–66. http://dx.doi.org/10.1177/0278364909356601.
Pełny tekst źródłaWang, Yandong, Tao Zhang, Yuanchao Wang, Jingwei Ma, Yanhui Li, and Jingzhuang Han. "Compass aided visual-inertial odometry." Journal of Visual Communication and Image Representation 60 (April 2019): 101–15. http://dx.doi.org/10.1016/j.jvcir.2018.12.029.
Pełny tekst źródłaLappe, M., M. Jenkin, and L. Harris. "Visual odometry by leaky integration." Journal of Vision 7, no. 9 (2010): 147. http://dx.doi.org/10.1167/7.9.147.
Pełny tekst źródłaPrasadSingh, Indushekhar. "VISUAL ODOMETRY FOR AUTONOMOUS VEHICLES." International Journal of Advanced Research 7, no. 9 (2019): 1136–44. http://dx.doi.org/10.21474/ijar01/9765.
Pełny tekst źródłaZHANG, Jieqiang, and Ryuichi UEDA. "Visual Odometry from Brick Road." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2022 (2022): 2P1—I12. http://dx.doi.org/10.1299/jsmermd.2022.2p1-i12.
Pełny tekst źródłaXu, Shuchen, Yongrong Sun, Kedong Zhao, Xiyu Fu, and Shuaishuai Wang. "Road-Network-Map-Assisted Vehicle Positioning Based on Pose Graph Optimization." Sensors 23, no. 17 (2023): 7581. http://dx.doi.org/10.3390/s23177581.
Pełny tekst źródłaChen, Baifan, Haowu Zhao, Ruyi Zhu, and Yemin Hu. "Marked-LIEO: Visual Marker-Aided LiDAR/IMU/Encoder Integrated Odometry." Sensors 22, no. 13 (2022): 4749. http://dx.doi.org/10.3390/s22134749.
Pełny tekst źródłaHuang, Gang, Zhaozheng Hu, Qianwen Tao, Fan Zhang, and Zhe Zhou. "Improved intelligent vehicle self-localization with integration of sparse visual map and high-speed pavement visual odometry." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235, no. 1 (2020): 177–87. http://dx.doi.org/10.1177/0954407020943306.
Pełny tekst źródłaWang, Haoran, Zhenglong Li, Hongwei Wang, Wenyan Cao, Fujing Zhang, and Yuheng Wang. "A Roadheader Positioning Method Based on Multi-Sensor Fusion." Electronics 12, no. 22 (2023): 4556. http://dx.doi.org/10.3390/electronics12224556.
Pełny tekst źródłaThapa, Vikas, Abhishek Sharma, Beena Gairola, Amit K. Mondal, Vindhya Devalla, and Ravi K. Patel. "A Review on Visual Odometry Techniques for Mobile Robots: Types and Challenges." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 13, no. 5 (2020): 618–31. http://dx.doi.org/10.2174/2352096512666191004142546.
Pełny tekst źródłaZhao, Zixu, Yucheng Zhang, Long Long, Zaiwang Lu, and Jinglin Shi. "Efficient and adaptive lidar–visual–inertial odometry for agricultural unmanned ground vehicle." International Journal of Advanced Robotic Systems 19, no. 2 (2022): 172988062210949. http://dx.doi.org/10.1177/17298806221094925.
Pełny tekst źródłaWan, Yingcai, Qiankun Zhao, Cheng Guo, Chenlong Xu, and Lijing Fang. "Multi-Sensor Fusion Self-Supervised Deep Odometry and Depth Estimation." Remote Sensing 14, no. 5 (2022): 1228. http://dx.doi.org/10.3390/rs14051228.
Pełny tekst źródłaLiu, Qiang, Haidong Zhang, Yiming Xu, and Li Wang. "Unsupervised Deep Learning-Based RGB-D Visual Odometry." Applied Sciences 10, no. 16 (2020): 5426. http://dx.doi.org/10.3390/app10165426.
Pełny tekst źródłaKim, Kyu-Won, Tae-Ki Jung, Seong-Hun Seo, and Gyu-In Jee. "Development of Tightly Coupled based LIDAR-Visual-Inertial Odometry." Journal of Institute of Control, Robotics and Systems 26, no. 8 (2020): 597–603. http://dx.doi.org/10.5302/j.icros.2020.20.0076.
Pełny tekst źródłaQiu, Haiyang, Xu Zhang, Hui Wang, et al. "A Robust and Integrated Visual Odometry Framework Exploiting the Optical Flow and Feature Point Method." Sensors 23, no. 20 (2023): 8655. http://dx.doi.org/10.3390/s23208655.
Pełny tekst źródłaLiu, Fei, Yashar Balazadegan Sarvrood, and Yang Gao. "Implementation and Analysis of Tightly Integrated INS/Stereo VO for Land Vehicle Navigation." Journal of Navigation 71, no. 1 (2017): 83–99. http://dx.doi.org/10.1017/s037346331700056x.
Pełny tekst źródłaRamezani, M., D. Acharya, F. Gu, and K. Khoshelham. "INDOOR POSITIONING BY VISUAL-INERTIAL ODOMETRY." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-2/W4 (September 14, 2017): 371–76. http://dx.doi.org/10.5194/isprs-annals-iv-2-w4-371-2017.
Pełny tekst źródłaLuo, Lishu, Fulun Peng, and Longhui Dong. "Improved Multi-Sensor Fusion Dynamic Odometry Based on Neural Networks." Sensors 24, no. 19 (2024): 6193. http://dx.doi.org/10.3390/s24196193.
Pełny tekst źródłaMostofi, N., A. Moussa, M. Elhabiby, and N. El-Sheimy. "RGB-D Indoor Plane-based 3D-Modeling using Autonomous Robot." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1 (November 7, 2014): 301–8. http://dx.doi.org/10.5194/isprsarchives-xl-1-301-2014.
Pełny tekst źródłaPeng, Gang, Qiang Gao, Yue Xu, Jianfeng Li, Zhang Deng, and Cong Li. "Pose Estimation Based on Bidirectional Visual–Inertial Odometry with 3D LiDAR (BV-LIO)." Remote Sensing 16, no. 16 (2024): 2970. http://dx.doi.org/10.3390/rs16162970.
Pełny tekst źródłaSingh, Gurpreet, Deepam Goyal, and Vijay Kumar. "Mobile robot localization using visual odometry in indoor environments with TurtleBot4." IAES International Journal of Artificial Intelligence (IJ-AI) 14, no. 1 (2025): 760. http://dx.doi.org/10.11591/ijai.v14.i1.pp760-768.
Pełny tekst źródłaGurpreet, Singh, Goyal Deepam, and Kumar Vijay. "Mobile robot localization using visual odometry in indoor environments with TurtleBot4." IAES International Journal of Artificial Intelligence (IJ-AI) 14, no. 1 (2025): 760–68. https://doi.org/10.11591/ijai.v14.i1.pp760-768.
Pełny tekst źródłaTerekhov, Mikhail A. "Overview of Modern Approaches to Visual Odometry." Computer tools in education, no. 3 (September 30, 2019): 5–14. http://dx.doi.org/10.32603/2071-2340-2019-3-5-14.
Pełny tekst źródłaGao, Wenxiang, Guizhi Yang, Yuzhang Wang, Jiaxin Ke, Xungao Zhong, and Lihua Chen. "Robust visual odometry based on image enhancement." Journal of Physics: Conference Series 2402, no. 1 (2022): 012010. http://dx.doi.org/10.1088/1742-6596/2402/1/012010.
Pełny tekst źródłaDas, Anweshan, Jos Elfring, and Gijs Dubbelman. "Real-Time Vehicle Positioning and Mapping Using Graph Optimization." Sensors 21, no. 8 (2021): 2815. http://dx.doi.org/10.3390/s21082815.
Pełny tekst źródłaSaha, Arindam, Bibhas Chandra Dhara, Saiyed Umer, Ahmad Ali AlZubi, Jazem Mutared Alanazi, and Kulakov Yurii. "CORB2I-SLAM: An Adaptive Collaborative Visual-Inertial SLAM for Multiple Robots." Electronics 11, no. 18 (2022): 2814. http://dx.doi.org/10.3390/electronics11182814.
Pełny tekst źródłaCongram, Benjamin, and Timothy Barfoot. "Field Testing and Evaluation of Single-Receiver GPS Odometry for Use in Robotic Navigation." Field Robotics 2, no. 1 (2022): 1849–73. http://dx.doi.org/10.55417/fr.2022057.
Pełny tekst źródłaZhu, Bihong, Aihua Yu, Beiping Hou, Gang Li, and Yong Zhang. "A Novel Visual SLAM Based on Multiple Deep Neural Networks." Applied Sciences 13, no. 17 (2023): 9630. http://dx.doi.org/10.3390/app13179630.
Pełny tekst źródłaGuizilini, Vitor, and Fabio Ramos. "Semi-parametric learning for visual odometry." International Journal of Robotics Research 32, no. 5 (2013): 526–46. http://dx.doi.org/10.1177/0278364912472245.
Pełny tekst źródłaRenner, Alpha, Lazar Supic, Andreea Danielescu, et al. "Visual odometry with neuromorphic resonator networks." Nature Machine Intelligence 6, no. 6 (2024): 653–63. http://dx.doi.org/10.1038/s42256-024-00846-2.
Pełny tekst źródłaWang, Kunfeng, Kaichun Zhao, Wenshuai Lu, and Zheng You. "Stereo Event-Based Visual–Inertial Odometry." Sensors 25, no. 3 (2025): 887. https://doi.org/10.3390/s25030887.
Pełny tekst źródłaXu, Shaoyan, Tao Wang, Congyan Lang, Songhe Feng, and Yi Jin. "Graph-based visual odometry for VSLAM." Industrial Robot: An International Journal 45, no. 5 (2018): 679–87. http://dx.doi.org/10.1108/ir-04-2018-0061.
Pełny tekst źródłaZhu, Kaiying, Xiaoyan Jiang, Zhijun Fang, Yongbin Gao, Hamido Fujita, and Jenq-Neng Hwang. "Photometric transfer for direct visual odometry." Knowledge-Based Systems 213 (February 2021): 106671. http://dx.doi.org/10.1016/j.knosys.2020.106671.
Pełny tekst źródła