Artykuły w czasopismach na temat „Vortex Simulation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Vortex Simulation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Han Xiao, Zhong Liu, Huai Liang Li, Xin Xin Feng i Zhen Zhong Xing. "Multiple Vortex Body Vortex Numerical Simulation". Advanced Materials Research 328-330 (wrzesień 2011): 1755–58. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1755.
Pełny tekst źródłaAshworth Briggs, Alexander, Alan Fleming, Jonathan Duffy i Jonathan R. Binns. "Tracking the vortex core from a surface-piercing flat plate by particle image velocimetry and numerical simulation". Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, nr 3 (23.07.2018): 793–808. http://dx.doi.org/10.1177/1475090218776202.
Pełny tekst źródłaKerr, Robert M., i Fazle Hussain. "Simulation of vortex reconnection". Physica D: Nonlinear Phenomena 37, nr 1-3 (lipiec 1989): 474–84. http://dx.doi.org/10.1016/0167-2789(89)90151-6.
Pełny tekst źródłaSun, Qiji, Chenxi Xu, Xuan Zou, Wei Guan, Xiao Liu, Xu Yang i Ao Ren. "Shape Optimization of the Triangular Vortex Flowmeter Based on the LBM Method". Symmetry 17, nr 4 (31.03.2025): 534. https://doi.org/10.3390/sym17040534.
Pełny tekst źródłaAzarpira, Maryam, Amir Zarrati i Pouya Farrokhzad. "Comparison between the Lagrangian and Eulerian Approach in Simulation of Free Surface Air-Core Vortices". Water 13, nr 5 (7.03.2021): 726. http://dx.doi.org/10.3390/w13050726.
Pełny tekst źródłaReyes, Jefferson Alberto Porras, Luis Miguel Navarrete Lopez, Jorge Ivan Armijo Martinez i Daniel Andrés Navarrete Proaño. "Hydrodynamic phenomena in a vertical-axis vortex turbine". Region - Water Conservancy 7, nr 1 (25.07.2024): 105. http://dx.doi.org/10.32629/rwc.v7i1.2431.
Pełny tekst źródłaLiu, Yongwei, Yalin Li i Dejiang Shang. "The Generation Mechanism of the Flow-Induced Noise from a Sail Hull on the Scaled Submarine Model". Applied Sciences 9, nr 1 (29.12.2018): 106. http://dx.doi.org/10.3390/app9010106.
Pełny tekst źródłaLiu, Xiao Lei, Song Li, Jing Shan Jiao, Yong Xue Liu, Lei Ming i Xiu Juan Liu. "Numerical Simulation of Tip Vortex in Air Refueling". Advanced Materials Research 712-715 (czerwiec 2013): 1217–20. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1217.
Pełny tekst źródłaLu, Yixiong, Tongwen Wu, Xin Xu, Li Zhang i Min Chu. "Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model". Atmosphere 11, nr 6 (1.06.2020): 576. http://dx.doi.org/10.3390/atmos11060576.
Pełny tekst źródłaChiu, Ching-Kai, T. Machida, Yingyi Huang, T. Hanaguri i Fu-Chun Zhang. "Scalable Majorana vortex modes in iron-based superconductors". Science Advances 6, nr 9 (luty 2020): eaay0443. http://dx.doi.org/10.1126/sciadv.aay0443.
Pełny tekst źródłaFan, Dingfan, Min Yu, Zhixiang Yao, Yang Du i Hang Liu. "A Method for Real-Time Measurement of the Vertical Vortex at Flood Discharge Outlets Using Ultrasonic Sensors". Sensors 24, nr 17 (28.08.2024): 5583. http://dx.doi.org/10.3390/s24175583.
Pełny tekst źródłaKiya, Masaru, i Hajime Ishii. "Vortex dynamics simulation of interacting vortex rings and filaments". Fluid Dynamics Research 3, nr 1-4 (wrzesień 1988): 197–202. http://dx.doi.org/10.1016/0169-5983(88)90065-2.
Pełny tekst źródłaTryggvason, Grétar. "Simulation of vortex sheet roll-up by vortex methods". Journal of Computational Physics 80, nr 1 (styczeń 1989): 1–16. http://dx.doi.org/10.1016/0021-9991(89)90087-9.
Pełny tekst źródłaHu, Zilong, Jiale Pan, Ran Tao, Yanzhao Wu, Di Zhu i Ruofu Xiao. "Large Eddy Simulation of Hydrofoil Tip Leakage Vortex". Journal of Physics: Conference Series 2463, nr 1 (1.03.2023): 012021. http://dx.doi.org/10.1088/1742-6596/2463/1/012021.
Pełny tekst źródłaGao, Qinggang, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar i Christoph Schär. "Vortex streets to the lee of Madeira in a kilometre-resolution regional climate model". Weather and Climate Dynamics 4, nr 1 (2.02.2023): 189–211. http://dx.doi.org/10.5194/wcd-4-189-2023.
Pełny tekst źródłaLiu, Zhenxiong. "The numerical simulation research of civil aviation engineer internal flow stability". Journal of Physics: Conference Series 2955, nr 1 (1.02.2025): 012022. https://doi.org/10.1088/1742-6596/2955/1/012022.
Pełny tekst źródłaBarannikova, D. D., V. E. Borzykh i A. G. Obukhov. "Numerical simulation of fire vortex". IOP Conference Series: Materials Science and Engineering 357 (maj 2018): 012040. http://dx.doi.org/10.1088/1757-899x/357/1/012040.
Pełny tekst źródłaMansfield, John R., Omar M. Knio i Charles Meneveau. "Towards lagrangian large vortex simulation". ESAIM: Proceedings 1 (1996): 49–64. http://dx.doi.org/10.1051/proc:1996019.
Pełny tekst źródłaTao, Rui, Hongxiang Ren, Delong Wang i Xiangen Bai. "Research on smoke simulation with vortex shedding". PLOS ONE 17, nr 6 (16.06.2022): e0269114. http://dx.doi.org/10.1371/journal.pone.0269114.
Pełny tekst źródłaSaban, D., J. F. Whidborne i A. K. Cooke. "Simulation of wake vortex effects for UAVs in close formation flight". Aeronautical Journal 113, nr 1149 (listopad 2009): 727–38. http://dx.doi.org/10.1017/s0001924000003389.
Pełny tekst źródłaForster, Kyle J., Sammy Diasinos, Graham Doig i Tracie J. Barber. "Large eddy simulation of transient upstream/downstream vortex interactions". Journal of Fluid Mechanics 862 (9.01.2019): 227–60. http://dx.doi.org/10.1017/jfm.2018.949.
Pełny tekst źródłaBelotsercovsky, Sergei, i Nikolay Khlapov. "Simulation of vortex diffusion influence on jet turbulent characteristics". Izvestiya VUZ. Applied Nonlinear Dynamics 3, nr 2 (15.12.1995): 94–103. https://doi.org/10.18500/0869-6632-1995-3-2-94-103.
Pełny tekst źródłaKEVLAHAN, N. K. R., i M. FARGE. "Vorticity filaments in two-dimensional turbulence: creation, stability and effect". Journal of Fluid Mechanics 346 (10.09.1997): 49–76. http://dx.doi.org/10.1017/s0022112097006113.
Pełny tekst źródłaHuan, Nguyen Van. "A HAIR AND HAIR VORTEX SIMULATION TECHNIQUE BASED ON VECTOR FIELDS ON A MANIFOLD". Vietnam Journal of Science and Technology 54, nr 1 (20.02.2016): 109. http://dx.doi.org/10.15625/0866-708x/54/1/6016.
Pełny tekst źródłaArnold, M., S. Filopoulos, W. White i M. Kamruzzaman. "A semi-empirical model for time-domain tower Vortex induced Vibration load simulations of wind turbines". Journal of Physics: Conference Series 2767, nr 2 (1.06.2024): 022032. http://dx.doi.org/10.1088/1742-6596/2767/2/022032.
Pełny tekst źródłaZHANG, YANZHI, WEIZHU BAO i QIANG DU. "Numerical simulation of vortex dynamics in Ginzburg-Landau-Schrödinger equation". European Journal of Applied Mathematics 18, nr 5 (październik 2007): 607–30. http://dx.doi.org/10.1017/s0956792507007140.
Pełny tekst źródłaDomfeh, Martin Kyereh, Samuel Gyamfi, Mark Amo-Boateng, Robert Andoh, Eric Antwi Ofosu i Gavin Tabor. "Numerical Simulation of an Air-Core Vortex and Its Suppression at an Intake Using OpenFOAM". Fluids 5, nr 4 (26.11.2020): 221. http://dx.doi.org/10.3390/fluids5040221.
Pełny tekst źródłaNguyen, Leon T., i John Molinari. "Simulation of the Downshear Reformation of a Tropical Cyclone". Journal of the Atmospheric Sciences 72, nr 12 (19.11.2015): 4529–51. http://dx.doi.org/10.1175/jas-d-15-0036.1.
Pełny tekst źródłaLi, Zhi Chuan, Qi Hu Sheng, Liang Zhang, Zhi Ming Cong i Jin Jiang. "Numerical Simulation of Blade-Wake Interaction of Vertical Axis Tidal Turbine". Advanced Materials Research 346 (wrzesień 2011): 318–23. http://dx.doi.org/10.4028/www.scientific.net/amr.346.318.
Pełny tekst źródłaCai, Qiurui, Zhengnong Li, Ricky W. K. Chan, Han Luo, Guodi Duan, Bin Huang i Honghua Wu. "Study on the Vibration Characteristics of Marine Riser Based on Flume Experiment and Numerical Simulation". Journal of Marine Science and Engineering 11, nr 7 (28.06.2023): 1316. http://dx.doi.org/10.3390/jmse11071316.
Pełny tekst źródłaHeyes, A. L., S. J. Hubbard, A. J. Marquis i D. A. Smith. "On the roll-up of a trailing vortex sheet in the very near field". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 217, nr 5 (1.05.2003): 263–69. http://dx.doi.org/10.1177/095441000321700501.
Pełny tekst źródłaYan, Jie, Nan Gui, Gongnan Xie i Jinsen Gao. "Direct Numerical Simulation and Visualization of Biswirling Jets". Advances in Mechanical Engineering 6 (1.01.2014): 193731. http://dx.doi.org/10.1155/2014/193731.
Pełny tekst źródłaPacioni, Carlo, i Florian Mayer. "vortex R: an R package for post Vortex simulation analysis". Methods in Ecology and Evolution 8, nr 11 (2.05.2017): 1477–81. http://dx.doi.org/10.1111/2041-210x.12786.
Pełny tekst źródłaFedirko, V. A., S. V. Polyakov, A. L. Kasatkin i M. V. Fedirko. "Numerical Simulation of Abrikosov Vortex at Columnar Defect in Superconductor". EPJ Web of Conferences 224 (2019): 02007. http://dx.doi.org/10.1051/epjconf/201922402007.
Pełny tekst źródłaVechtel, D. "In-flight simulation of wake encounters using deformed vortices". Aeronautical Journal 117, nr 1196 (październik 2013): 997–1018. http://dx.doi.org/10.1017/s0001924000008654.
Pełny tekst źródłaGrooß, Jens-Uwe, Paul Konopka i Rolf Müller. "Ozone Chemistry during the 2002 Antarctic Vortex Split". Journal of the Atmospheric Sciences 62, nr 3 (1.03.2005): 860–70. http://dx.doi.org/10.1175/jas-3330.1.
Pełny tekst źródłaPark, Ilryong, Jein Kim, Bugeun Paik i Hanshin Seol. "Numerical Study on Tip Vortex Cavitation Inception on a Foil". Applied Sciences 11, nr 16 (9.08.2021): 7332. http://dx.doi.org/10.3390/app11167332.
Pełny tekst źródłaKumar, Vikash, i Kailash Jha. "Effects of convergent–divergent vortex finders on the performance of cyclone separators using computational fluid dynamics simulations". SIMULATION 96, nr 1 (13.05.2019): 31–42. http://dx.doi.org/10.1177/0037549719846570.
Pełny tekst źródłaHuang, Haiming, Guo Huang, Xiaoliang Xu i Weijie Li. "Simulation of co-rotating vortices based on compressible vortex method". International Journal of Numerical Methods for Heat & Fluid Flow 24, nr 6 (29.07.2014): 1290–300. http://dx.doi.org/10.1108/hff-03-2013-0095.
Pełny tekst źródłaVechtel, D. "Simulation study of wake encounters with straight and deformed vortices". Aeronautical Journal 120, nr 1226 (kwiecień 2016): 651–74. http://dx.doi.org/10.1017/aer.2016.14.
Pełny tekst źródłaZhang, Wenqiang, Tao Yang, Jun Shen i Qiangqiang Sun. "Lessons Learnt from the Simulations of Aero-Engine Ground Vortex". Aerospace 11, nr 9 (26.08.2024): 699. http://dx.doi.org/10.3390/aerospace11090699.
Pełny tekst źródłaLin, Dong Long, Zhao Pang, Ke Xin Zhang i Shuang You. "Fluid-Structure Interaction Simulation of Wind Turbine". Applied Mechanics and Materials 678 (październik 2014): 556–60. http://dx.doi.org/10.4028/www.scientific.net/amm.678.556.
Pełny tekst źródłaTian, Shuling, Yisheng Gao, Xiangrui Dong i Chaoqun Liu. "Definitions of vortex vector and vortex". Journal of Fluid Mechanics 849 (18.06.2018): 312–39. http://dx.doi.org/10.1017/jfm.2018.406.
Pełny tekst źródłaLipecki, T., i A. Flaga. "Application of Simulation Methods of Stochastic Processes to Vortex Excitation". Archives of Civil Engineering 63, nr 1 (28.03.2017): 77–98. http://dx.doi.org/10.1515/ace-2017-0006.
Pełny tekst źródłaTukkee, Ali M., Hussain H. Al-Kayiem i Syed I. U. Gilani. "Humidity Effect on the Simulation Accuracy of Solar Vortex Engine Performance". Journal of Solar Energy Research Updates 8 (31.10.2021): 118–29. http://dx.doi.org/10.31875/2410-2199.2021.08.10.
Pełny tekst źródłaKonstantinovskaya, T. V., V. E. Borisov i A. E. Lutsky. "Visualization Methods of Vortex Structures Acting on the Wing in High-Speed Flows". Scientific Visualization 16, nr 4 (listopad 2024): 109–19. http://dx.doi.org/10.26583/sv.16.4.10.
Pełny tekst źródłaDonghyuk, Kang, Shimamura Taisuke, Fujiwara Marie, Yokota Kazuhiko i Sato Kotaro. "1035 NUMERICAL SIMULATION OF SYNTHETIC JET BY DISCRETE VORTEX METHOD". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1035–1_—_1035–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1035-1_.
Pełny tekst źródłaLEE, Mi Young, Tetuya KAWAMURA i Kunio KUWAHARA. "Numerical Simulation of Shock Wave in a Vortex Dominant Flow". Proceedings of the JSME annual meeting 2004.2 (2004): 19–20. http://dx.doi.org/10.1299/jsmemecjo.2004.2.0_19.
Pełny tekst źródłaLiu, Zhe, Peng Lin, Qi Zhou i Dong Xia Li. "Single Vortex Simulation around a Square Cylinder". Applied Mechanics and Materials 405-408 (wrzesień 2013): 3204–7. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.3204.
Pełny tekst źródłaSatrio, Martin A., David J. Bodine, Anthony E. Reinhart, Takashi Maruyama i Franklin T. Lombardo. "Understanding How Complex Terrain Impacts Tornado Dynamics Using a Suite of High-Resolution Numerical Simulations". Journal of the Atmospheric Sciences 77, nr 10 (1.10.2020): 3277–300. http://dx.doi.org/10.1175/jas-d-19-0321.1.
Pełny tekst źródła