Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Water dimer.

Artykuły w czasopismach na temat „Water dimer”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Water dimer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Malomuzh, M. P., and V. M. Makhlaichuk. "Dimerization Degree of Water Molecules, Their Effective Polarizability, and Heat Capacity of Saturated Water Vapor." Ukrainian Journal of Physics 63, no. 2 (March 10, 2018): 121. http://dx.doi.org/10.15407/ujpe63.2.121.

Pełny tekst źródła
Streszczenie:
The properties of water vapor have been studied. The main attention is focused on the physical nature of the effective polarizability of water vapor and the heat capacity of water vapor at a constant volume, with a proper modeling of those parameters being a good test for a correct description of the dimer concentration in various approaches. Thermal vibrations of water dimers are found to be the main factor governing the specific temperature dependences of those characteristics, and the normal coordinates of dimer vibrations are determined. Fluctuations of the dipole moments of dimers and the
Style APA, Harvard, Vancouver, ISO itp.
2

Bertran, J., M. F. Ruiz-L�pez, D. Rinaldi, and J. L. Rivail. "Water dimer in liquid water." Theoretica Chimica Acta 84, no. 3 (November 1992): 181–94. http://dx.doi.org/10.1007/bf01113207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Li, Xiao Yi, and Leif A. Eriksson. "Molecular dynamics study of lignin constituents in water." Holzforschung 59, no. 3 (May 1, 2005): 253–62. http://dx.doi.org/10.1515/hf.2005.042.

Pełny tekst źródła
Streszczenie:
Abstract Molecular dynamics simulations were used to explore the distribution of linkages in coumaryl alcohol and coniferyl alcohol systems, including monomeric systems and monomers interacting with β-O4 dimers, respectively. Studying the interactions of two monolignols and the corresponding dimers sheds light on the preferred mechanism of reaction of the growing lignin polymer from the view of kinetic factors. The energy change upon association was quantified, and the distances between the centers of mass of different molecules, and the relative orientations between the phenol groups were cal
Style APA, Harvard, Vancouver, ISO itp.
4

Apelblat, Alexander. "Dimerization and continuous association including formation of cyclic dimers." Canadian Journal of Chemistry 69, no. 4 (April 1, 1991): 638–47. http://dx.doi.org/10.1139/v91-097.

Pełny tekst źródła
Streszczenie:
New aspects of the theory of ideal associated mixtures related to a differentiation between formed cyclic and linear dimers are discussed. A mathematical analysis is presented for the dimerization model, A + B + A2, the continuous association (Mecke–Kempter) model, [Formula: see text], both coupled with the cyclic dimmer → linear dimer transformation and for the unsymmetrical (mixed) dimer formation model, A + B + A2 + B2 + AB. Introduction of the standard reaction enthalpies and volumes associated with transformations of dimers leads to a considerable change in behavior and symmetry propertie
Style APA, Harvard, Vancouver, ISO itp.
5

Malomuzh, N. P., V. N. Makhlaichuk, and S. V. Khrapatyi. "Water dimer dipole moment." Russian Journal of Physical Chemistry A 88, no. 8 (July 18, 2014): 1431–35. http://dx.doi.org/10.1134/s0036024414080172.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wijaya, Karna, Oliver Moers, Armand Blaschette, and Peter G. Jones. "Polysulfonylamine, XC [1] Carbonsäure-Dimere, Wasser-Dimere und 18-Krone-6-Moleküle als Baugruppen eines supramolekularen Kettenpolymers: Darstellung und Struktur von (CH2CH2O)6 • 4H2O • 2HN(SO2C6H4-4-COOH)2 / Polysulfonylamines, XC [1] Carboxylic Acid Dimers, Water Dimers and 18-Crown-6 Molecules as Building Blocks in a Supramolecular Chain Polymer: Synthesis and Structure of (CH2CH2O)6 · 4H2O · 2HN(SO2C6H4-4-COOH)2." Zeitschrift für Naturforschung B 52, no. 8 (August 1, 1997): 997–1002. http://dx.doi.org/10.1515/znb-1997-0821.

Pełny tekst źródła
Streszczenie:
The ternary title complex (2) is readily obtained by co-crystallization of 18-crown-6 (18C6) and di(4-carboxybenzenesulfonyl)amine (1) from hot water and was characterized by low-temperature X-ray diffraction. The crystal structure (triclinic, space group P1̄) displays one-dimensional polymeric sequences [(H2O)2···18C6···(H2O)2···{HN(SO2C6H4-4-COOH)2}2] in which the molecules are associated through seven independent hydrogen bonds. The 18C6 ring lies on a crystallographic inversion centre and adopts the common pseudo-D3d conformation. On both sides, the ring is flanked by a strongly hydrogen-b
Style APA, Harvard, Vancouver, ISO itp.
7

Ruscic, Branko. "Active Thermochemical Tables: Water and Water Dimer." Journal of Physical Chemistry A 117, no. 46 (July 8, 2013): 11940–53. http://dx.doi.org/10.1021/jp403197t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Goebbert, Daniel J., and Paul G. Wenthold. "Water Dimer Proton Affinity from the Kinetic Method: Dissociation Energy of the Water Dimer." European Journal of Mass Spectrometry 10, no. 6 (December 2004): 837–45. http://dx.doi.org/10.1255/ejms.684.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Bartlett, Stuart A., Emma V. Sackville, Emma K. Gibson, Veronica Celorrio, Peter P. Wells, Maarten Nachtegaal, Stafford W. Sheehan та Ulrich Hintermair. "Evidence for tetranuclear bis-μ-oxo cubane species in molecular iridium-based water oxidation catalysts from XAS analysis". Chemical Communications 55, № 54 (2019): 7832–35. http://dx.doi.org/10.1039/c9cc02088h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Quek, Puay Hoon, and Jiangyong Hu. "Effects of wavelengths of medium-pressure ultraviolet radiation on photolyase and subsequent photoreactivation." Water Supply 13, no. 1 (February 1, 2013): 158–65. http://dx.doi.org/10.2166/ws.2012.087.

Pełny tekst źródła
Streszczenie:
This study aims to investigate the effect of different wavelengths (254, 266, 280 and 365 nm) in polychromatic medium-pressure (MP) UV radiation on the ability of photolyases in repairing dimers and discusses its impact on subsequent photoreactivation. Photolyase was exposed to various doses and irradiances of the UV wavelengths and the dimer repair abilities of the irradiated photolyase were determined via a spectrophotometric assay. At wavelengths below 300 nm, dimer repair rates were not influenced by the UV irradiation between 0.03 and 0.10 mW cm−2. For 365 nm, photolyase exhibited enhance
Style APA, Harvard, Vancouver, ISO itp.
11

Murthy, A. S. N., and Shoba Ranganathan. "Compliant fields for molecular interactions: Water dimer and formic acid dimer." International Journal of Quantum Chemistry 27, no. 5 (May 1985): 547–57. http://dx.doi.org/10.1002/qua.560270504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hargrove, J. "Water dimer absorption of visible light." Atmospheric Chemistry and Physics Discussions 7, no. 4 (July 27, 2007): 11123–40. http://dx.doi.org/10.5194/acpd-7-11123-2007.

Pełny tekst źródła
Streszczenie:
Abstract. Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm−1, ΔH°301 K=−16.6±2 kJ mol−1 and ΔS°301 K=−80±10 J mol−1 K−1. This transition peaks at 409.5 nm, could be attributed to the 8th overto
Style APA, Harvard, Vancouver, ISO itp.
13

Dutton, Philip J., Frank R. Fronczek, Thomas M. Fyles, and Richard D. Gandour. "A host for the water dimer." Journal of the American Chemical Society 112, no. 24 (November 1990): 8984–85. http://dx.doi.org/10.1021/ja00180a056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Chakravorty, Subhas J., and Ernest R. Davidson. "The water dimer: correlation energy calculations." Journal of Physical Chemistry 97, no. 24 (June 1993): 6373–83. http://dx.doi.org/10.1021/j100126a011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Lane, Joseph R. "CCSDTQ Optimized Geometry of Water Dimer." Journal of Chemical Theory and Computation 9, no. 1 (November 29, 2012): 316–23. http://dx.doi.org/10.1021/ct300832f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Gómez, Sara, Jonathan Nafziger, Albeiro Restrepo, and Adam Wasserman. "Partition-DFT on the water dimer." Journal of Chemical Physics 146, no. 7 (February 21, 2017): 074106. http://dx.doi.org/10.1063/1.4976306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bieker, Helen, Jolijn Onvlee, Melby Johny, Lanhai He, Thomas Kierspel, Sebastian Trippel, Daniel A. Horke, and Jochen Küpper. "Pure Molecular Beam of Water Dimer." Journal of Physical Chemistry A 123, no. 34 (July 19, 2019): 7486–90. http://dx.doi.org/10.1021/acs.jpca.9b06460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Miller, Johanna L. "Water dimer yields to spectroscopic study." Physics Today 66, no. 4 (April 2013): 18. http://dx.doi.org/10.1063/pt.3.1937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tretyakov, Mikhail Yu, Maxim A. Koshelev, Evgenii A. Serov, Vladimir V. Parshin, Tatiana A. Odintsova, and Grigoriy M. Bubnov. "Water dimer and the atmospheric continuum." Uspekhi Fizicheskih Nauk 184, no. 11 (2014): 1199–215. http://dx.doi.org/10.3367/ufnr.0184.201411c.1199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Tretyakov, M. Yu, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov. "Water dimer and the atmospheric continuum." Physics-Uspekhi 57, no. 11 (November 30, 2014): 1083–98. http://dx.doi.org/10.3367/ufne.0184.201411c.1199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Suhm;, M. A. "How Broad Are Water Dimer Bands?" Science 304, no. 5672 (May 7, 2004): 823–24. http://dx.doi.org/10.1126/science.304.5672.823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Mukhopadhyay, Anamika, William T. S. Cole, and Richard J. Saykally. "The water dimer I: Experimental characterization." Chemical Physics Letters 633 (July 2015): 13–26. http://dx.doi.org/10.1016/j.cplett.2015.04.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Mukhopadhyay, Anamika, Sotiris S. Xantheas, and Richard J. Saykally. "The water dimer II: Theoretical investigations." Chemical Physics Letters 700 (May 2018): 163–75. http://dx.doi.org/10.1016/j.cplett.2018.03.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Shillings, A. J. L., S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones. "An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list." Atmospheric Chemistry and Physics 11, no. 9 (May 9, 2011): 4273–87. http://dx.doi.org/10.5194/acp-11-4273-2011.

Pełny tekst źródła
Streszczenie:
Abstract. Absorption of solar radiation by water dimer molecules in the Earth's atmosphere has the potential to act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared around 750 nm in the expected region of the | 0〈f | 4〉b|0 〉 overtone of
Style APA, Harvard, Vancouver, ISO itp.
25

Shillings, A. J. L., S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones. "A upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list." Atmospheric Chemistry and Physics Discussions 10, no. 10 (October 11, 2010): 23345–80. http://dx.doi.org/10.5194/acpd-10-23345-2010.

Pełny tekst źródła
Streszczenie:
Abstract. The absorption of solar radiation by water dimer molecules in the Earth's atmosphere can potentially act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared in the expected region of the third overtone of the water dimer hydrogen
Style APA, Harvard, Vancouver, ISO itp.
26

Latif, Rauf, Nicole Kerlero de Rosbo, Tany Amarant, Rino Rappuoli, Gregor Sappler, and Avraham Ben-Nun. "Reversal of the CD4+/CD8+T-Cell Ratio in Lymph Node Cells upon In Vitro Mitogenic Stimulation by Highly Purified, Water-Soluble S3-S4 Dimer of Pertussis Toxin." Infection and Immunity 69, no. 5 (May 1, 2001): 3073–81. http://dx.doi.org/10.1128/iai.69.5.3073-3081.2001.

Pełny tekst źródła
Streszczenie:
ABSTRACT Pertussis toxin (PT), a holomer consisting of a catalytic S1 subunit and a B oligomer composed of S2-S4 and S3-S4 dimers, held together by the S5 subunit, exerts profound effects on immune cells, including T-cell mitogenicity. While the mitogenic activity of PT was shown to reside fully within the B oligomer, it could not be assigned to any particular B-oligomer component. In this study, we purified the S3-S4 dimer to homogeneity under conditions propitious to maintenance of the native conformation. In contrast to previous reports which suggested that both S3-S4 and S2-S4 dimers are n
Style APA, Harvard, Vancouver, ISO itp.
27

Errea, L. F., P. Martínez, L. Méndez, and Ismanuel Rabadán. "Ab initiotreatment of proton collisions with water and water dimer." Journal of Physics: Conference Series 194, no. 10 (November 1, 2009): 102002. http://dx.doi.org/10.1088/1742-6596/194/10/102002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Åstrand, Per-Olof, Kenneth Ruud, Kurt V. Mikkelsen, and Trygve Helgaker. "Atomic Charges of the Water Molecule and the Water Dimer." Journal of Physical Chemistry A 102, no. 39 (September 1998): 7686–91. http://dx.doi.org/10.1021/jp980574e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Gregory, Jonathon K. "The dipole moment of the water dimer." Chemical Physics Letters 282, no. 2 (January 1998): 147–51. http://dx.doi.org/10.1016/s0009-2614(97)01228-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hu, T. A., and T. R. Dyke. "Water dimer Coriolis resonances and Stark effects." Journal of Chemical Physics 91, no. 12 (December 15, 1989): 7348–54. http://dx.doi.org/10.1063/1.457308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Uhlík, Filip, Zdeněk Slanina, Shyi-Long Lee, Bo-Cheng Wang, Ludwik Adamowicz, and Shigeru Nagase. "Water-Dimer Stability and Its Fullerene Encapsulations." Journal of Computational and Theoretical Nanoscience 12, no. 6 (April 1, 2015): 959–64. http://dx.doi.org/10.1166/jctn.2015.3835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

UhlÍk, Filip, Zdeněk Slanina, Shyi-Long Lee, Bo-Cheng Wang, Ludwik Adamowicz, and Shigeru Nagase. "Water-Dimer Stability and Its Fullerene Encapsulations." Journal of Computational and Theoretical Nanoscience 12, no. 9 (September 1, 2015): 2622. http://dx.doi.org/10.1166/jctn.2015.4220.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nelander, Bengt. "The intramolecular fundamentals of the water dimer." Journal of Chemical Physics 88, no. 8 (April 15, 1988): 5254–56. http://dx.doi.org/10.1063/1.454584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Odutola, J. A., T. A. Hu, D. Prinslow, S. E. O’dell, and T. R. Dyke. "Water dimer tunneling states with K=0." Journal of Chemical Physics 88, no. 9 (May 1988): 5352–61. http://dx.doi.org/10.1063/1.454595.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Hamm, Peter, and Gerhard Stock. "Vibrational conical intersections in the water dimer." Molecular Physics 111, no. 14-15 (April 3, 2013): 2046–56. http://dx.doi.org/10.1080/00268976.2013.782438.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Koirala, Rajendra Pd, Shyam P. Khanal, and Narayan P. Adhikari. "Transport properties of cysteine dimer in water." Himalayan Physics 8 (December 31, 2019): 11–18. http://dx.doi.org/10.3126/hp.v8i0.29941.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Testa, A. C. "Hydrogen Bonding and the Protonated Water Dimer." Spectroscopy Letters 32, no. 5 (September 1, 1999): 819–28. http://dx.doi.org/10.1080/00387019909350029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

MOK, By DANIEL K. W., and NICHOLAS C. HANDY and ROGER D. AMOS. "A density functional water dimer potential surface." Molecular Physics 92, no. 4 (November 1997): 667–76. http://dx.doi.org/10.1080/002689797169943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Finneran, Ian A., P. Brandon Carroll, Marco A. Allodi, and Geoffrey A. Blake. "Hydrogen bonding in the ethanol–water dimer." Physical Chemistry Chemical Physics 17, no. 37 (2015): 24210–14. http://dx.doi.org/10.1039/c5cp03589a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Feyereisen, Martin W., David Feller, and David A. Dixon. "Hydrogen Bond Energy of the Water Dimer." Journal of Physical Chemistry 100, no. 8 (January 1996): 2993–97. http://dx.doi.org/10.1021/jp952860l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Pieniazek, Piotr A., Joost VandeVondele, Pavel Jungwirth, Anna I. Krylov, and Stephen E. Bradforth. "Electronic Structure of the Water Dimer Cation." Journal of Physical Chemistry A 112, no. 27 (July 2008): 6159–70. http://dx.doi.org/10.1021/jp802140c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Malomuzh, N. P., V. N. Mahlaichuk, and S. V. Khrapatyi. "Water dimer equilibrium constant of saturated vapor." Russian Journal of Physical Chemistry A 88, no. 8 (July 18, 2014): 1287–92. http://dx.doi.org/10.1134/s003602441406017x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kawasaki, Masahiro, Akihiro Sugita, Christopher Ramos, Yutaka Matsumi, and Hiroto Tachikawa. "Photodissociation of Water Dimer at 205 nm†." Journal of Physical Chemistry A 108, no. 39 (September 2004): 8119–24. http://dx.doi.org/10.1021/jp048857w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kim, Hahn, and Han Myoung Lee. "Ammonia−Water Cation and Ammonia Dimer Cation." Journal of Physical Chemistry A 113, no. 25 (June 25, 2009): 6859–64. http://dx.doi.org/10.1021/jp903093a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Pennanen, Teemu S., Perttu Lantto, Mikko Hakala, and Juha Vaara. "Nuclear magnetic resonance parameters in water dimer." Theoretical Chemistry Accounts 129, no. 3-5 (August 15, 2010): 313–24. http://dx.doi.org/10.1007/s00214-010-0782-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Szczesniak, Malgorzata M., Robert J. Brenstein, Slawomir M. Cybulski, and Steve Scheiner. "Potential energy surface for dispersion interaction in water dimer and hydrogen fluoride dimer." Journal of Physical Chemistry 94, no. 5 (March 1990): 1781–88. http://dx.doi.org/10.1021/j100368a015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kwasniewski, Daniel, Mitchell Butler, and Hanna Reisler. "Vibrational predissociation of the phenol–water dimer: a view from the water." Physical Chemistry Chemical Physics 21, no. 26 (2019): 13968–76. http://dx.doi.org/10.1039/c8cp06581k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Wang, Zhiping, Fengshou Zhang, Xuefeng Xu, Yanbiao Wang, and Chaoyi Qian. "Dynamics of water dimer in femtosecond laser pulses: a simulation study." Modern Physics Letters B 28, no. 22 (August 30, 2014): 1450179. http://dx.doi.org/10.1142/s0217984914501796.

Pełny tekst źródła
Streszczenie:
In this paper, we study the electronic and ionic dynamics of the water dimer subject to short and intense laser pulses. The dynamics is described by means of the time-dependent local-density approximation coupled to ionic molecular dynamics (TDLDA-MD) non-adiabatically. The impact of laser frequency on the response of water dimer is discussed by exploring the ionization, the dipole signal and bond lengths of water dimer. Furthermore, it is found that the water donor is more sensitive to the laser field than the water acceptor and the probabilities for the ionic states show the general pattern
Style APA, Harvard, Vancouver, ISO itp.
49

Liegener, Christopher-Maria, Rung Shen Chen, Peter Otto, and Janos Ladik. "Effects of hydration and stacking interactions on the electronic structure of DNA models." Collection of Czechoslovak Chemical Communications 53, no. 9 (1988): 1946–52. http://dx.doi.org/10.1135/cccc19881946.

Pełny tekst źródła
Streszczenie:
The energy band structures of a cytosine, adenine, and guanine stack in the presence of water have been calculated by the ab initio crystal-orbital method. The surrounding water molecules have been simulated by arrays of point charges, using for their positions the results of previous Monte-Carlo calculations of the corresponding polynucleotides. Furthermore, the effects of internucleotide interactions have been studied on the basis of calculations on base dimer stacks in comparison to the corresponding dimers and monomers.
Style APA, Harvard, Vancouver, ISO itp.
50

Tachikawa, Hiroto. "Ionization dynamics of water dimer on ice surface." Surface Science 647 (May 2016): 1–7. http://dx.doi.org/10.1016/j.susc.2015.11.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!