Gotowa bibliografia na temat „Weakly sequentially continuous duality mapping”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Weakly sequentially continuous duality mapping”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Weakly sequentially continuous duality mapping"

1

K., Piesie Frimpong, and Prempeh E. "Viscosity Approximation Methods in Re exive Banach Spaces with a Sequence of Contractions." British Journal of Mathematics & Computer Science 22, no. 3 (2017): 1–10. https://doi.org/10.9734/BJMCS/2017/33414.

Pełny tekst źródła
Streszczenie:
The aim of this paper is to study viscosity approximation methods in re exive Banach spaces. Let E be a re exive Banach space which admits a weakly sequentially continuous duality mapping j : E → E , C a nonempty closed convex subset of E, μn, n ≥ 1 a sequence of contractions on C and Tn, n = 1, 2, 3, · · ·N a nite family of nonexpansive mappings on C. We show that under appropriate conditions on κ the implicit iterative sequence τ de ned by τ = κμn(τ) + (1 − κ)Tnτ where κ ∈ (0, 1) converges strongly to a common xed point τ ∈ k∩ n=1 FTn. We further show that the results hold for an in nite family Tn, n ∈ N of nonexpansive mappings.
Style APA, Harvard, Vancouver, ISO itp.
2

Shehu, Yekini, and Jerry N. Ezeora. "Path Convergence and Approximation of Common Zeroes of a Finite Family ofm-Accretive Mappings in Banach Spaces." Abstract and Applied Analysis 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/285376.

Pełny tekst źródła
Streszczenie:
LetEbe a real Banach space which is uniformly smooth and uniformly convex. LetKbe a nonempty, closed, and convex sunny nonexpansive retract ofE, whereQis the sunny nonexpansive retraction. IfEadmits weakly sequentially continuous duality mappingj, path convergence is proved for a nonexpansive mappingT:K→K. As an application, we prove strong convergence theorem for common zeroes of a finite family ofm-accretive mappings ofKtoE. As a consequence, an iterative scheme is constructed to converge to a common fixed point (assuming existence) of a finite family of pseudocontractive mappings fromKtoEunder certain mild conditions.
Style APA, Harvard, Vancouver, ISO itp.
3

K., Piesie Frimpong, and Prempeh E. "Viscosity Approximation Methods in Reflexive Banach Spaces." British Journal of Mathematics & Computer Science 22, no. 2 (2017): 1–11. https://doi.org/10.9734/BJMCS/2017/33396.

Pełny tekst źródła
Streszczenie:
In this paper, we study viscosity approximation methods in reflexive Banach spaces. Let X be a reflexive Banach space which admits a weakly sequentially continuous duality mapping <em>j : X → X<sup>*</sup>, C</em> a nonempty closed convex subset of <em>X, h<sub>n</sub></em>, where n ≥1 a sequence of contractions on C and Tn, n = 1; 2; 3; N, for N 2 N, a nite family of commuting nonexpansive mappings on C. We show that under appropriate conditions on n the explicit iterative sequence n de ned by n+1 = nhn(n) + (1 􀀀 n)Tnn; n 1; 1 2 C where n 2 (0; 1) converges strongly to a common xed point 2 NT k=1 Fk : We consequently show that the results is true for an in nite family Tn; n = 1; 2; 3; of commuting nonexpansive mapping on C.
Style APA, Harvard, Vancouver, ISO itp.
4

Wangkeeree, Rattanaporn. "Strong Convergence Theorems of the General Iterative Methods for Nonexpansive Semigroups in Banach Spaces." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–21. http://dx.doi.org/10.1155/2011/643740.

Pełny tekst źródła
Streszczenie:
LetEbe a real reflexive Banach space which admits a weakly sequentially continuous duality mapping fromEtoE*. LetS={T(s):0≤s&lt;∞}be a nonexpansive semigroup onEsuch thatFix(S):=⋂t≥0Fix(T(t))≠∅, andfis a contraction onEwith coefficient0&lt;α&lt;1. LetFbeδ-strongly accretive andλ-strictly pseudocontractive withδ+λ&gt;1andγa positive real number such thatγ&lt;1/α(1-1-δ/λ). When the sequences of real numbers{αn}and{tn}satisfy some appropriate conditions, the three iterative processes given as follows:xn+1=αnγf(xn)+(I-αnF)T(tn)xn,n≥0,yn+1=αnγf(T(tn)yn)+(I-αnF)T(tn)yn,n≥0, andzn+1=T(tn)(αnγf(zn)+(I-αnF)zn),n≥0converge strongly tox̃, wherex̃is the unique solution inFix(S)of the variational inequality〈(F-γf)x̃,j(x-x̃)〉≥0,x∈Fix(S). Our results extend and improve corresponding ones of Li et al. (2009) Chen and He (2007), and many others.
Style APA, Harvard, Vancouver, ISO itp.
5

Jung, Jong. "Convergence of iterative algorithms for continuous pseudocontractive mappings." Filomat 30, no. 7 (2016): 1767–77. http://dx.doi.org/10.2298/fil1607767j.

Pełny tekst źródła
Streszczenie:
In this paper, we prove strong convergence of a path for a convex combination of a pseudocontractive type of operators in a real reflexive Banach space having a weakly continuous duality mapping J? with gauge function ?. Using path convergency, we establish strong convergence of an implicit iterative algorithm for a pseudocontractive mapping combined with a strongly pseudocontractive mapping in the same Banach space.
Style APA, Harvard, Vancouver, ISO itp.
6

Yue, Chen, H. M. Abu-Donia, H. A. Atia, et al. "Weakly compatible fixed point theorem in intuitionistic fuzzy metric spaces." AIP Advances 13, no. 4 (2023): 045113. http://dx.doi.org/10.1063/5.0147488.

Pełny tekst źródła
Streszczenie:
This study presents fundamental theorems, lemmas, and mapping definitions. There are three types of mappings: binary operators, compatible mappings, and sequentially continuous mappings. The symbols used to represent fuzzy metric spaces are intuitive. Icons were also used to prescribe a shared, linked fixed point in intuitionistic fuzzy metric space for two compatible and sequentially continuous mappings that satisfy ϕ-contractive conditions. To accomplish this, finding the intersection of both mappings was necessary.
Style APA, Harvard, Vancouver, ISO itp.
7

Ali, Bashir. "Common Fixed Points Approximation for Asymptotically Nonexpansive Semigroup in Banach Spaces." ISRN Mathematical Analysis 2011 (August 3, 2011): 1–14. http://dx.doi.org/10.5402/2011/684158.

Pełny tekst źródła
Streszczenie:
Let be a real Banach space satisfying local uniform Opial's condition, whose duality map is weakly sequentially continuous. Let be a uniformly asymptotically regular family of asymptotically nonexpansive semigroup of with function . Let and be weakly contractive map. Let be -strongly accretive and -strictly pseudocontractive map with . Let be an increasing sequence in and let and be sequences in satisfying some conditions. For some positive real number appropriately chosen, let be a sequence defined by , , , . It is proved that converges strongly to a common fixed point of the family which is also the unique solution of the variational inequality .
Style APA, Harvard, Vancouver, ISO itp.
8

Jung, Jong Soo. "Convergence Theorems for Modified Implicit Iterative Methods with Perturbation for Pseudocontractive Mappings." Mathematics 8, no. 1 (2020): 72. http://dx.doi.org/10.3390/math8010072.

Pełny tekst źródła
Streszczenie:
In this paper, first, we introduce a path for a convex combination of a pseudocontractive type of mappings with a perturbed mapping and prove strong convergence of the proposed path in a real reflexive Banach space having a weakly continuous duality mapping. Second, we propose two modified implicit iterative methods with a perturbed mapping for a continuous pseudocontractive mapping in the same Banach space. Strong convergence theorems for the proposed iterative methods are established. The results in this paper substantially develop and complement the previous well-known results in this area.
Style APA, Harvard, Vancouver, ISO itp.
9

Wangkeeree, Rabian, and Pakkapon Preechasilp. "The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces." Abstract and Applied Analysis 2012 (2012): 1–20. http://dx.doi.org/10.1155/2012/695183.

Pełny tekst źródła
Streszczenie:
We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.
Style APA, Harvard, Vancouver, ISO itp.
10

Sunthrayuth, Pongsakorn, and Poom Kumam. "A New Composite General Iterative Scheme for Nonexpansive Semigroups in Banach Spaces." International Journal of Mathematics and Mathematical Sciences 2011 (2011): 1–18. http://dx.doi.org/10.1155/2011/560671.

Pełny tekst źródła
Streszczenie:
We introduce a new general composite iterative scheme for finding a common fixed point of nonexpansive semigroups in the framework of Banach spaces which admit a weakly continuous duality mapping. A strong convergence theorem of the purposed iterative approximation method is established under some certain control conditions. Our results improve and extend announced by many others.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii