Gotowa bibliografia na temat „Wettability of vegetal surfaces”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Wettability of vegetal surfaces”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Wettability of vegetal surfaces"
Tita, SPS, R. Medeiros, JR Tarpani, E. Frollini i V. Tita. "Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites". Journal of Composite Materials 52, nr 20 (25.01.2018): 2743–53. http://dx.doi.org/10.1177/0021998317753886.
Pełny tekst źródłaOsorio, Fernando, Gonzalo Valdés, Olivier Skurtys, Ricardo Andrade, Ricardo Villalobos-Carvajal, Andrea Silva-Weiss, Wladimir Silva-Vera, Begoña Giménez, Marcela Zamorano i Johana Lopez. "Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps". Coatings 8, nr 1 (30.12.2017): 16. http://dx.doi.org/10.3390/coatings8010016.
Pełny tekst źródłaBartman, Marcin, Sebastian Balicki, Lucyna Hołysz i Kazimiera A. Wilk. "Surface Properties of Graffiti Coatings on Sensitive Surfaces Concerning Their Removal with Formulations Based on the Amino-Acid-Type Surfactants". Molecules 28, nr 4 (20.02.2023): 1986. http://dx.doi.org/10.3390/molecules28041986.
Pełny tekst źródłaConradi, Marjetka, Bojan Podgornik, Maja Remškar, Damjan Klobčar i Aleksandra Kocijan. "Tribological Evaluation of Vegetable Oil/MoS2 Nanotube-Based Lubrication of Laser-Textured Stainless Steel". Materials 16, nr 17 (26.08.2023): 5844. http://dx.doi.org/10.3390/ma16175844.
Pełny tekst źródłaWang, Bingjie, Ziqiong Geng, Bo Pan, Lei Jiang i Yong Lin. "Effect of Vegetable Oil Adjuvant on Wetting, Drift, and Deposition of Pesticide Droplets from UAV Sprayers on Litchi Leaves". Agronomy 15, nr 2 (24.01.2025): 293. https://doi.org/10.3390/agronomy15020293.
Pełny tekst źródłaAshokkumar, Saranya, Jens Adler-Nissen i Per Møller. "Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability". Applied Surface Science 263 (grudzień 2012): 86–94. http://dx.doi.org/10.1016/j.apsusc.2012.09.002.
Pełny tekst źródłaBaldin, Vitor, Leonardo Rosa Ribeiro da Silva, Rogério Valentim Gelamo, Andres Bustillo Iglesias, Rosemar Batista da Silva, Navneet Khanna i Alisson Rocha Machado. "Influence of Graphene Nanosheets on Thermo-Physical and Tribological Properties of Sustainable Cutting Fluids for MQL Application in Machining Processes". Lubricants 10, nr 8 (21.08.2022): 193. http://dx.doi.org/10.3390/lubricants10080193.
Pełny tekst źródłaMa, Cha, Yu Ping Yang i Long Li. "Study on Drilling Fluid Technology of Eliminating Bit Balling by Changing Wettability". Advanced Materials Research 542-543 (czerwiec 2012): 1083–86. http://dx.doi.org/10.4028/www.scientific.net/amr.542-543.1083.
Pełny tekst źródłaOrkoula, Malvina G., Petros G. Koutsoukos, Michel Robin, Olga Vizika i Louis Cuiec. "Wettability of CaCO3 surfaces". Colloids and Surfaces A: Physicochemical and Engineering Aspects 157, nr 1-3 (październik 1999): 333–40. http://dx.doi.org/10.1016/s0927-7757(99)00047-3.
Pełny tekst źródłaVargha-Butler, E. I., E. Kiss, C. N. C. Lam, Z. Keresztes, E. Kálmán, L. Zhang i A. W. Neumann. "Wettability of biodegradable surfaces". Colloid & Polymer Science 279, nr 12 (1.12.2001): 1160–68. http://dx.doi.org/10.1007/s003960100549.
Pełny tekst źródłaRozprawy doktorskie na temat "Wettability of vegetal surfaces"
Bami, Chatenet Yann. "Modélisation analytique du mouillage sur des topographies multi-échelles complexes pour le design biomimétique de surfaces superhydrophobes". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0053.
Pełny tekst źródłaA drop of water rolls on the sacred lotus leaf but stay fiercely anchored onto a rose petal. Both surfaces display a complex morphology at the micrometric and nanometric scales. Therefore, one could ask: how are their wettability and their morphology related? The purpose of this dissertation is to carry out a biomimetic approach in order to conceive superhydrophobic surfaces and to better understand nature’s strategies. In a first part, vegetal surfaces have been characterized by directly observing the wetting state they produce with the help of confocal microscopy. We demonstrate the fact that the sacred lotus produces a metastable mixed-state wetting that is characterized by a finite equilibrium anchorage depth of triple lines. On the other hand, a Wenzel-Wenzel hierarchical wetting state is observed on the rose petal, in spite of what literature suggests. From these experiments, key questions have been highlighted and confronted to the current models available within the literature. In a second part, two approaches to capillary phenomena have been adapted to the study of a composite wetting state produced by a multiscale topography. We introduce a complete parameterization allowing us to tackle the problem of the mixed-state wetting and its stability, to predict the value of the equilibrium anchorage depth on the sacred lotus leaf and to identify the contribution of its nanoscale topography to its wetting. Then, we thoroughly describe the mechanisms underlying the advancing and receding motions of triple lines and their recursive propagation across every topographical scale constituting a surface by introducing the notion of precursor motion. We highlight the effect of the equilibrium anchorage depth on the contact angle hysteresis and the role played by topographical subscales on the robustness of the composite wetting state. Through the experimental study of model surfaces manufactured by photolithography, we compare our predictions to reality. Eventually, in a third part, the conclusions drawn from our model are transposed into technical specifications for the conception of robust superhydrophobic surfaces, the strategy of the sacred lotus leaf is thoroughly described and two promising manufacturing processes are proposed through the recrystallization of natural wax and two-photon polymerization
Melberg, Brita. "Nanostructured surfaces with patterned wettability". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19410.
Pełny tekst źródłaHobæk, Thor Christian. "Nanostructured PDMS surfaces with patterned wettability". Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-21045.
Pełny tekst źródłaBadge, Ila. "Tuning Wettability And Adhesion Of Structured Surfaces". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1393716842.
Pełny tekst źródłaZhang, Xueyun. "Wettability tuning by surface modification /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CBME%202009%20ZHANG.
Pełny tekst źródłaFalah, Toosi Salma. "Superhydrophobic polymeric surfaces : fabrication, wettability, and antibbacterial activity". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62353.
Pełny tekst źródłaApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Plaisance, Marc Charles. "Cellular Response to Surface Wettability Gradient on Microtextured Surfaces". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/53730.
Pełny tekst źródłaShirafkan, Abbas. "Wettability and hydrophilicity of rigid and soft contact lens surfaces". Thesis, City University London, 1997. http://openaccess.city.ac.uk/8385/.
Pełny tekst źródłaSernek, Milan. "Comparative Analysis of Inactivated Wood Surfaces". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27429.
Pełny tekst źródłaPh. D.
Tow, Emily Winona. "Bubble behavior in subcooled flow boiling on surfaces of variable wettability". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75682.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 59).
Flow boiling is important in energy conversion and thermal management due to its potential for very high heat fluxes. By improving understanding of the conditions leading to bubble departure, surfaces can be designed that increase heat transfer coefficients in flow boiling. Bubbles were visualized during subcooled nucleate flow boiling of water on a surface of variable wettability. Images obtained from the videos were analyzed to find parameters influencing bubble size at departure. A model was developed relating the dimensions of the bubble at departure to its upstream and downstream contact angles based on a rigid-body force balance between momentum and surface tension and assuming a skewed truncated spherical bubble shape. Both experimental and theoretical results predict that bubble width and height decrease with increasing flow speed and that the width increases with the equilibrium contact angle. The model also predicts that the width and height increase with the amount of contact angle hysteresis and that the height increases with equilibrium contact angle, though neither of these trends were clearly demonstrated by the data. Several directions for future research are proposed, including modifications to the model to account for deviations of the bubbles from the assumed geometry and research into the parameters controlling contact angle hysteresis of bubbles in a flow. Additionally, observations support that surfaces with periodically-varying contact angle may prevent film formation and increase the heat transfer coefficients in both film and pool boiling.
by Emily W. Tow.
S.B.
Książki na temat "Wettability of vegetal surfaces"
International Symposium on Contact Angle, Wettability and Adhesion (3rd 2002 Providence, R.I.). Contact angle, wettability and adhesion. Redaktor Mittal K. L. 1945-. Utrecht: VSP, 2003.
Znajdź pełny tekst źródłaR, Jones William, Herrera-Fierro Pilar i United States. National Aeronautics and Space Administration., red. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródła1940-, Jones William R., Herrera-Fierro Pilar i United States. National Aeronautics and Space Administration., red. Spontaneous dewetting of a perfluoropolyether. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaKlintström, Stefan Welin. Ellipsometry and wettability gradient surfaces. Linköping University, 1992.
Znajdź pełny tekst źródłaGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier, 2018. http://dx.doi.org/10.1016/c2017-0-02303-0.
Pełny tekst źródłaChen, Yuan, Zheng Yongmei, Cheng Qunfeng i Hou Yongping. Bio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Jenny Stanford Publishing, 2015.
Znajdź pełny tekst źródłaJiang, Guancheng. Gas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology Books, 2018.
Znajdź pełny tekst źródłaBio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaGas Wettability of Reservoir Rock Surfaces with Porous Media. Elsevier Science & Technology, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Wettability of vegetal surfaces"
Perz, Susan V., Christopher S. McMillan i Michael J. Owen. "Wettability of Fluorosilicone Surfaces". W Fluorinated Surfaces, Coatings, and Films, 112–28. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0787.ch009.
Pełny tekst źródłaKatz, Joseph L., Jin Sheng Sheu i Jer Ru Maa. "Nucleation on Smooth Surfaces". W Modern Approaches to Wettability, 423–34. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_16.
Pełny tekst źródłaBusscher, H. J. "Wettability of Surfaces in the Oral Cavity". W Modern Approaches to Wettability, 249–61. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_9.
Pełny tekst źródłaChristenson, H. K. "The Long-Range Attraction between Macroscopic Hydrophobic Surfaces". W Modern Approaches to Wettability, 29–51. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_2.
Pełny tekst źródłaSchrader, Malcolm E. "High- and Medium-Energy Surfaces: Ultrahigh Vacuum Approach". W Modern Approaches to Wettability, 53–71. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_3.
Pełny tekst źródłaJoud, Jean-Charles, i Marie-Geneviève Barthés-Labrousse. "Experimental Determination through Wettability Measurements". W Physical Chemistry and Acid-Base Properties of Surfaces, 45–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch5.
Pełny tekst źródłaOzbay, Ridvan, Ali Kibar i Chang-Hwan Choi. "Bubble Adhesion to Superhydrophilic Surfaces". W Advances in Contact Angle, Wettability and Adhesion, 149–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119117018.ch6.
Pełny tekst źródłaPapadopoulou, Evie L. "Pulsed Laser Deposition of Surfaces with Tunable Wettability". W Self-Cleaning Materials and Surfaces, 253–76. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118652336.ch9.
Pełny tekst źródłaJoud, Jean-Charles, i Marie-Geneviève Barthés-Labrousse. "Wettability of an Ideal Surface: Overview". W Physical Chemistry and Acid-Base Properties of Surfaces, 1–8. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119145387.ch1.
Pełny tekst źródłaLee, Junghoon, Junghoon Lee i Chang-Hwan Choi. "Superhydrophobic Surfaces for Anti-Corrosion of Aluminum". W Advances in Contact Angle, Wettability and Adhesion, 267–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119459996.ch12.
Pełny tekst źródłaStreszczenia konferencji na temat "Wettability of vegetal surfaces"
Orlova, E. G., D. S. Nikitin i S. A. Myazina. "Wettability of nanocomposite ceramic surfaces". W INTERNATIONAL YOUTH SCIENTIFIC CONFERENCE “HEAT AND MASS TRANSFER IN THE THERMAL CONTROL SYSTEM OF TECHNICAL AND TECHNOLOGICAL ENERGY EQUIPMENT” (HMTTSC 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120680.
Pełny tekst źródłaKita, Yutaku, Coinneach MacKenzie-Dover, Alexandros Askounis, Yasuyuki Takata i Khellil Sefiane. "DROP MOBILITY ON SUPERHYDROPHOBIC SURFACES WITH WETTABILITY CONTRASTS". W International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.023512.
Pełny tekst źródłaParin, Riccardo, Stefano Bortolin, Alessandro Martucci i Davide Del Col. "EXPERIMENTS OF DROPWISE CONDENSATION ON WETTABILITY CONTROLLED SURFACES". W International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cod.024208.
Pełny tekst źródłaSong, Hyunsoo, Yongku Lee, Songwan Jin, Ho-Young Kim i Jung Yul Yoo. "Sessile Drop Evaporation on Surfaces of Various Wettability". W ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52096.
Pełny tekst źródłaHan, Z. J., M. Shakerzadeh, B. K. Tay i C. M. Tan. "Protein immobilization on nanostructured surfaces with different wettability". W 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424833.
Pełny tekst źródłaBonner, Richard W. "Dropwise Condensation on Surfaces With Graded Hydrophobicity". W ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88516.
Pełny tekst źródłaZheng, Yongmei. "Bioinspired Wettability-Controlled Surfaces with Gradient Micro- and Nanostructures". W The 3rd World Congress on New Technologies. Avestia Publishing, 2017. http://dx.doi.org/10.11159/icnfa17.114.
Pełny tekst źródłaSun, Emily Wei-Hsin, i Ian C. Bourg. "Wettability of Mineral Surfaces by Water and Carbon Dioxide". W Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2492.
Pełny tekst źródłaAnand, A. Vivek, S. Gollakota, V. Hariprasad, N. Shunmugavelu, Ashifkhan i V. Arumugam. "Wettability characteristics of microgroove patterned SS304 stainless steel surfaces". W INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117963.
Pełny tekst źródłaColetti, C., M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta i S. E. Saddow. "Biocompatibility and wettability of crystalline SiC and Si surfaces". W 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353678.
Pełny tekst źródłaRaporty organizacyjne na temat "Wettability of vegetal surfaces"
Степанюк, Олександр Миколайович, i Руслана Михайлівна Балабай. Controlling by Defects of Switching of ZnO Nanowire Array Surfaces from Hydrophobic to Hydrophilic. Вид-во Прикарпатського нац. ун-т ім. Василя Стефаника, październik 2023. http://dx.doi.org/10.31812/123456789/8487.
Pełny tekst źródłaAbbott, Nicholas L., John P. Folkers i George M. Whitesides. Manipulation of the Wettability of Surfaces on the 0.1 to 1 Micrometer Scale Through Micromachining and Molecular Self-Assembly. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1992. http://dx.doi.org/10.21236/ada254887.
Pełny tekst źródłaBarker, Amanda, Thomas Douglas, Erik Alberts, P. U. Ashvin Iresh Fernando, Garrett George, Jon Maakestad, Lee Moores i Stephanie Saari. Influence of chemical coatings on solar panel performance and snow accumulation. Engineer Research and Development Center (U.S.), styczeń 2024. http://dx.doi.org/10.21079/11681/48059.
Pełny tekst źródła