Książki na temat „Yield predictions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych książek naukowych na temat „Yield predictions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.
J, Zarnoch Stanley, i Southern Forest Experiment Station (New Orleans, La.), red. Growth and yield predictions for thinned and unthinned slash pine plantations on cutover sites in the west Gulf Region. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1992.
Znajdź pełny tekst źródłaInternational, Symposium on Stocks Assessment and Yield Prediction (1985 Quetico Centre Ontario). International Symposium on Stocks Assessment and Yield Prediction. Ottawa: Department of Fisheries and Oceans, 1987.
Znajdź pełny tekst źródłaB, Yang, Outcalt Kenneth W i United States. Forest Service. Southern Research Station, red. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaDennington, Roger W. New loblolly pine growth and yield prediction system. Atlanta, Ga: U.S. Dept. of Agriculture, Forest Service, Cooperative Forestry, 1988.
Znajdź pełny tekst źródłaB, Yang, Outcalt Kenneth W i United States. Forest Service. Southern Research Station, red. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaB, Yang, Outcalt Kenneth W i United States. Forest Service. Southern Research Station., red. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaRockwood, D. L. Stand-yield prediction for managed Ocala sand pine. Ashville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaRockwood, D. L. Stand-yield prediction for managed Ocala sand pine. Ashville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaInternational Symposium on Stocks Assessment and Yield Prediction (1985 Quetico Centre, Ont.). International Symposium on Stocks Assessment and Yield Prediction [proceedings]. Ottawa: Fisheries and Oceans, Information and Publications Branch, 1987.
Znajdź pełny tekst źródłaJosé de Jesús Pineda de Gyvez. IC defect-sensitivity: Theory and computational models for yield prediction. [s.l.]: [s.n.], 1991.
Znajdź pełny tekst źródłaHoff, Kristen G. Limitations of lumber-yield nomograms for predicting lumber requirements. Newton Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaHoff, Kristen G. Limitations of lumber-yield nomograms for predicting lumber requirements. Newton Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaHoff, Kristen G. Limitations of lumber-yield nomograms for predicting lumber requirements. Newton Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaUnited States. Forest Service. Northeastern Research Station, red. Limitations of lumber-yield nomograms for predicting lumber requirements. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaUnited States. Forest Service. Northeastern Research Station, red. Limitations of lumber-yield nomograms for predicting lumber requirements. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaVeale, Stuart R. Bond yield analysis: A guide to predicting bond returns. New York, NY: New York Institute of Finance, 1988.
Znajdź pełny tekst źródłaBaldwin, V. C. Loblolly pine growth and yield prediction for managed west Gulf plantations. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1987.
Znajdź pełny tekst źródłaLogan, R. L. Prediction of sediment yield from tributary basins along Huelsdonk ridge, Hoh River, Washington. [Olumpia, Wash.]: Washington State Dept. of Natural Resources, 1991.
Znajdź pełny tekst źródłaBrantley, Steven R. The Alaska Volcano Observatory: Expanded monitoring of volcanoes yields results. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Znajdź pełny tekst źródłaKarvonen, Tuomo. A model for predicting the effect of drainage on soil moisture, soil temperature and crop yield. Otaniemi, Finland: Helsinki University of Technology, Laboratory of Hydrology and Water Resources Engineering, 1988.
Znajdź pełny tekst źródłaBlaszczynski, Jacek S. Watershed soil erosion, runoff, and sediment yield prediction using geographic information systems: A manual of GIS procedures. Denver, Colo: U.S. Dept. of the Interior, Bureau of Land Management, BLM Service Center, 1994.
Znajdź pełny tekst źródłaP, Dagnall S., Harwell Laboratory (Oxfordshire, England). Energy Technology Support Unit. i Macaulay Land Use Research Institute., red. Predicting yield of short rotation coppice: Proceedings of a workshop : 27 February 1997, ETSU, Harwell, UK. [Harwell?]: ETSU, 1997.
Znajdź pełny tekst źródłaB, Ward Keith, Baldwin V. C i Southern Forest Experiment Station (New Orleans, La.), red. COMPUTEM̲ERCHLOB: A growth and yield prediction system with a merchandising optimizer for planted loblolly pine in the West Gulf region. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1990.
Znajdź pełny tekst źródłaB, Ward Keith, Baldwin V. C i Southern Forest Experiment Station (New Orleans, La.), red. COMPUTEunderMERCHLOB: A growth and yield prediction system with a merchandising optimizer for planted loblolly pine in the West Gulf region. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1990.
Znajdź pełny tekst źródłaShrimp Yield Prediction Workshop (1983 Galveston, Tex.). Proceedings of the Shrimp Yield Prediction Workshop: November 16-17, 1983, Texas A&M University at Galveston, Mitchell Campus, Galveston, Texas. College Station, Tex: Texas A&M Sea Grant College Program, 1986.
Znajdź pełny tekst źródłaB, Ward Keith, Baldwin V. C i Southern Forest Experiment Station (New Orleans, La.), red. COMPUTE MERCHLOB: A growth and yield prediction system with a merchandising optimizer for planted loblolly pine in the West Gulf region. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1990.
Znajdź pełny tekst źródła1936-, Chang S. J., red. VB merch-lob: A growth-and-yield prediction system with a merchandising optimizer for planted loblolly pine in the West Gulf region. Asheville, N.C: United States Dept. of Agriculture, Forest Service, Southern Research Station, 2005.
Znajdź pełny tekst źródła1936-, Chang S. J., red. VB merch-slash: A growth-and-yield prediction system with a merchandising optimizer for planted slash pine in the West Gulf region. Asheville, N.C: United States Dept. of Agriculture, Forest Service, Southern Research Station, 2005.
Znajdź pełny tekst źródłaNixon, Chappell Henry, Maguire Douglas A i University of Washington. College of Forest Resources., red. Predicting forest growth and yield: Current issues, future prospects : papers presented at a seminar series and workshop held at the University of Washington, January-March 1987. Seattle, Wash: College of Forest Resources, University of Washington, 1987.
Znajdź pełny tekst źródłaSingh, Teja. Forest yield predictions: Risk modeling and simulation : Final report. Forestry Canada, Northern Forestry Centre, 1990.
Znajdź pełny tekst źródłaBirch, Jonathan. The Rule under Attack. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198733058.003.0003.
Pełny tekst źródłaBaker, Victor R. Interdisciplinarity and the Earth Sciences. Redaktor Robert Frodeman. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198733522.013.8.
Pełny tekst źródłaStand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Znajdź pełny tekst źródłaPernet, Bruno, red. Larval Feeding: Mechanisms, Rates, and Performance in Nature. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0007.
Pełny tekst źródłaYan, Veronica X., i Daphna Oyserman. The world as we see it. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789710.003.0011.
Pełny tekst źródłaKautish, Sandeep, Vishal Goyal, N. Pradeep, Sonia Abdellatif i C. R. Nirmala. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction. IGI Global, 2019.
Znajdź pełny tekst źródłaKautish, Sandeep, Vishal Goyal, N. Pradeep, Sonia Abdellatif i C. R. Nirmala. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction. IGI Global, 2019.
Znajdź pełny tekst źródłaKautish, Sandeep, Vishal Goyal, N. Pradeep, Sonia Abdellatif i C. R. Nirmala. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction. IGI Global, 2019.
Znajdź pełny tekst źródłaPradeep, N. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction. IGI Global, 2019.
Znajdź pełny tekst źródłaKautish, Sandeep, Vishal Goyal, N. Pradeep, Sonia Abdellatif i C. R. Nirmala. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction. IGI Global, 2019.
Znajdź pełny tekst źródłaLimitations of lumber-yield nomograms for predicting lumber requirements. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 2000.
Znajdź pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Strip-Yield Model for Predicting the Growth of Part-Through Cracks under Cyclic Loading. Independently Published, 2018.
Znajdź pełny tekst źródłaBoken, Vijendra K., Arthur P. Cracknell i Ronald L. Heathcote. Monitoring and Predicting Agricultural Drought. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195162349.001.0001.
Pełny tekst źródłaKagan, Jerome. Five Constraints on Predicting Behavior. The MIT Press, 2018. http://dx.doi.org/10.7551/mitpress/9780262036528.001.0001.
Pełny tekst źródłaJappelli, Tullio, i Luigi Pistaferri. The Age Profile of Consumption and Wealth. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199383146.003.0002.
Pełny tekst źródłaKrupenye, Christopher, Evan L. MacLean i Brian Hare. Does the bonobo have a (chimpanzee-like) theory of mind? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198728511.003.0006.
Pełny tekst źródłaMarshall, Brian E. Predicting Ecology and Fish Yields in African Reservoirs from Preimpoundment Physico-Chemical (C I F a Technical Paper). Food & Agriculture Org, 1985.
Znajdź pełny tekst źródłaFerraro, Paul J. Are payments for ecosystem services benefiting ecosystems and people? Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808978.003.0025.
Pełny tekst źródłaWittman, David M. General Relativity and the Schwarzschild Metric. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0018.
Pełny tekst źródłaClarke, Andrew. The Metabolic Theory of Ecology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0012.
Pełny tekst źródła