Rozprawy doktorskie na temat „Yield predictions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Yield predictions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Vagh, Yunous. "Mining climate data for shire level wheat yield predictions in Western Australia". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2013. https://ro.ecu.edu.au/theses/695.
Pełny tekst źródłaYildirim, Sibel [Verfasser], Urs [Akademischer Betreuer] Schmidhalter, Eckart [Gutachter] Priesack i Urs [Gutachter] Schmidhalter. "Wheat and maize yield development in Bavaria until 2045 : Usage of statistical models for predictions / Sibel Yildirim ; Gutachter: Eckart Priesack, Urs Schmidhalter ; Betreuer: Urs Schmidhalter". München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/122807318X/34.
Pełny tekst źródłaFerragina, Alessandro. "New phenotypes predictions obtained by innovative infrared spectroscopy calibrations and their genetic analysis in dairy cattle populations". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424294.
Pełny tekst źródłaL’obiettivo principale di questa tesi è stato quello di valutare l’efficienza della spettroscopia a infrarosso per la predizione, a livello individuale, di “nuovi fenotipi” che descrivono le proprietà tecnologiche del latte bovino. Sono stati testati approcci statistici di calibrazione classici e innovativi, e sono stati inoltre stimati e valutati i parametri genetici delle predizioni ottenute per verificarne la possibile inclusione negli indici di selezione come metodo indiretto. Su un totale di 1,264 campioni di latte individuale, sono state effettuate le analisi che hanno previsto l’impiego di una procedura standard di micro-caseificazione per la misura di 7 caratteri relativi alla trasformazione casearia, in particolare sono state rilevate 3 misure di resa espresse come percentuale del latte lavorato, (%CYs; resa a fresco, resa in solidi totali, acqua ritenuta nella cagliata) e 4 misure di recupero di nutrienti nella cagliata o persi nel siero (%RECs; grasso, proteina, solidi totali ed energia). Le proprietà di coagulazione tradizionali (tempo di coagulazione, RCT; tempo di rassodamento, k20; consistenza del coagulo a 30 e 45 minuti dall’aggiunta del caglio, a30 e a45 rispettivamente) sono state misurate con un Formagraph (Foss Electric A/S, Hillerød, Denmark) in un test della consistenza del coagulo (CF) di 90 min. Utilizzando tutte le 360 informazioni di CF per campione registrate nei 90 min, sono stati inoltre ricavati, attraverso un modello matematico, dei nuovi parametri (tempo di coagulazione modellizzato, RCTeq; valore asintotico potenziale di CF per un tempo infinito, CFP; costante di rassodamento, kCF; costante di sineresi, kSR; valore massimo di CF, CFmax; tempo necessario affinché CF raggiunga il livello massimo, tmax). Per ogni campione sono stati raccolti due spettri a infrarosso in trasformata di Fourier (FTIR), utilizzando un MilkoScan FT6000 (Foss Electric, Hillerød, Denmark) nel range spettrale compreso tra 5,000 e 900 onde × cm-1, i due spettri sono stati mediati prima delle analisi. Un primo processo di calibrazione è stato effettuato per la predizione di %CYs e %RECs, utilizzando il software WinISI II (Infrasoft International LLC, State College, PA) in cui sono implementati dei modelli basati sulla partial least square regression (PLS). I risultati ottenuti hanno mostrato ottime accuratezze di predizione tranne che per il recupero di grasso. Per migliorare le accuratezze di predizione, sono stati testati dei modelli Bayesiani, comunemente usati in genomica, e confrontati con la PLS. Dai risultati ottenuti, per alcuni caratteri difficili da predire, si è visto che i modelli Bayesiani hanno delle prestazioni migliori. Utilizzando una procedura di validazione esterna come metodo di valutazione delle prestazioni di calibrazione, la PLS è stata utilizzata per la predizione di %CYs e %RECs, mentre i modelli Bayesiani sono stati utilizzati per la predizione delle proprietà di coagulazione e per i parametri derivanti dalla modellizzazione della consistenza del coagulo. In entrambi i casi i risultati ottenuti, relativi all’accuratezza di predizione, hanno mostrato un’efficienza medio bassa. Inoltre, sono stati stimati i parametri genetici dei valori predetti nel processo di validazione e nonostante la medio-bassa accuratezza delle predizioni, le ereditabilità dei valori predetti sono state simili o più alte dei corrispondenti valori misurati. L’impiego dei valori predetti come metodo di selezione indiretta è stato valutato attraverso la stima delle correlazioni genetiche tra valori predetti e misurati. I risultati hanno dimostrato, anche in questo caso che le correlazioni genetiche erano sempre superiori a quelle fenotipiche e nella maggior parte dei casi vicine o superiori al 90%. Infine, le equazioni di predizione sviluppate per %CYs e %RECs, sono state impiegate per la predizione di questi fenotipi su un set di dati costituito da circa 200,000 spettri di campioni individuali di latte di vacche di razza Frisona, Bruna e Pezzata Rossa italiane. I parametri genetici delle predizioni ottenute per ogni carattere sono stati stimati, dimostrando di essere ereditabili, con valori di ereditabilità simili a quelli dei valori misurati. Le correlazioni genetiche tra i valori predetti di %CYs e %RECs, e quelli relativi ai dati produttivi e di composizione del latte, hanno dimostrato che i modelli di selezione in uso hanno un effetto limitato sul miglioramento dei parametri tecnologici. Proteina e grasso del latte non spiegano tutta la variabilità genetica di %CYs e, in particolare, di %RECs, quindi per il miglioramento dell’attitudine casearia e conseguente valorizzazione economica del latte, questi caratteri andrebbero selezionati direttamente
Bayazit, Dervis. "Yield Curve Estimation And Prediction With Vasicek Model". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605126/index.pdf.
Pełny tekst źródłaMisailidis, Nikiforos. "Understanding and predicting alcohol yield from wheat". Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/understanding-and-predicting-alcohol-yield-from-wheat(845cbadd-5825-488e-94e7-160c60b2ef0d).html.
Pełny tekst źródłaVaradan, Sridhar. "Efficient vlsi yield prediction with consideration of partial correlations". [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2503.
Pełny tekst źródłaLima, Isabel Maria Sarmento de Beires de Abreu e. "Previsão de produção da casta Touriga Franca na Região do Douro com base nas componentes de rendimento". Master's thesis, ISA, 2014. http://hdl.handle.net/10400.5/6801.
Pełny tekst źródłaYield predicting is a great advantage for winegrowers' competitiveness. To determine which variables explain most of the yield's variation at harvest in a Touriga Franca parcel at Quinta do Vale D. Maria (Douro), a sample of 98 grapevines was selected and its yield components studied through2013. Using an 18 grapevine subsample, 3 yield predicting models were achieved. The first uses "bunch number/vine", "average stem weight/bunch", "berry weight/spur" and "average berry number/ bunch" and explains 92% of yield variation per vine with the smallest statistical deviation measures, offering the best quality estimate. The second uses "fertility index/spur" and "bunch number" to explain 73% of yield variation per vine, with intermediate deviation measures. The third model allows a yield estimate through bunch number per vine, with a R2 of 0,72 , but higher deviation measures than the previous one. The last two models are determined through observation, avoiding bunch destruction. The choice of which model to use depends on the quality of the estimate and the practicality desired by the winegrower. This work showed good results relating to yield predicting for Touriga Franca, a poorly studied variety despite its importance in Douro. The implementing of these procedures will enable production control in the biggest parcel in Quinta do Vale D. Maria.
Iqbal, Muhammad Mutahir. "Analysis of long-term experiment on cotton using a blend of theoretical and new graphical methods to study treatment effects over time". Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298101.
Pełny tekst źródłaMsadala, V. P. "Sediment yield prediction based on analytical methods and mathematical modelling". Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2863.
Pełny tekst źródłaENGLISH ABSTRACT: A study of the state of reservoir sedimentation in South Africa based on reservoir sediment deposit data, has shown that a considerable number of reservoirs have serious sedimentation problems. The analysis of the reservoir sediment deposit data showed that almost 25% of the total number of reservoirs have lost between 10 to 30% of their original storage capacity. The average storage loss due to sedimentation in South African reservoirs is approximately 0.3% per year while the average annual storage loss for all the reservoirs in the world is 0.8%. The aim of this research was to develop sediment yield prediction methods based on analytical approaches and mathematical modelling. The sediment yield prediction methods can be used in planning and management of water resources particularly in reservoir sedimentation control. The catchment erosion and sediment yield modelling methods can be applied in temporal and spatial analysis of sediment yields which results are essential for detailed design of water resources, particularly in the identification of critical erosion areas, sediment sources and formulation of catchment management strategies. Current analytical methods for the prediction of sediment yield have been reviewed. Nine sediment yield regions have been demarcated based on the observed sediment yields and catchment characteristics. Empirical and probabilistic approaches were investigated. The probabilistic approach is based on analysis of the observed sediment yields that were calculated from reservoir sediment deposit, river suspended sediment sampling data and soil erodibility data. The empirical equations have been derived from regression analysis of the variables that were envisaged to have a significant effect on erosion and sediment yields in South Africa. Empirical equations have been developed and shown to have accurate and reliable predictive capability in six of the nine regions. The probabilistic approach has been recommended for the prediction of sediment yields in the remaining three regions where reliable regression equations could not be derived. The predictive accuracy of both the probabilistic and empirical approaches was checked and verified using the discrepancy ratio and graphs of the observed and calculated data. While the analytical methods are needed to predict the sediment yield for the whole catchment, mathematical modelling to predict sediment yields is applied for more detailed analysis of sediment yield within the catchment. An evaluation of available catchment sediment yield mathematical modelling systems was carried out. The main criteria for the choice of a numerical model to be adopted for detailed evaluation was based on the following considerations: the model’s capabilities, user requirements and its application. The SHETRAN model (Ewen et al., 2000) was therefore specifically chosen because of its ability to simulate relatively larger catchment areas (it can handle catchment scales from less than 1km2 to 2500km2), its ability to simulate erosion in channels, gullies and landslides, its applicability to a wide range of land-use types and ability to simulate land use changes. Another model, ACRU (Smithers et al., 2002) was also reviewed. The aim of the model evaluation was to provide a conceptual understanding of catchment sediment yield modelling processes comprising model set up, calibration, validation and simulation. The detailed evaluation of the SHETRAN model was done through a case study of Glenmaggie Dam in Australia. The flow was calibrated and validated using data from 1975 to 1984, and 1996 to 2006 respectively. The results for both the calibration and validation were reasonable and reliable. The sediment load was validated against turbidity derived sediment load data from 1996 to 2006. The model was used to identify sources of sediment and areas of higher sediment yield. The land use of a selected sub-catchment was altered to analyse the impact of land use and vegetative cover on the sediment yield. Based on the results, the SHETRAN model was confirmed to be a reliable model for catchment sediment yield modelling including simulation of different land uses.
AFRIKAANSE OPSOMMING: ‘n Studie van die stand van damtoeslikking in Suid-Afrika toon dat daar ernstige toeslikkingsprobleme by baie reservoirs bestaan. ’n Ontleding van die toeslikkingsyfers gegrond op damkomopmetings toon dat omtrent 25% van die totale getal reservoirs tussen 10 en 30% van hulle oorspronklike opgaarvermoë verloor het. Die gemiddelde tempo van damtoeslikking in Suid-Afrika is 0.3%/jaar, wat laer is as die wêreld gemiddeld van 0.8%/jaar. Die oogmerk met hierdie navorsing was om sedimentlewering voorspellingsmetodes te ontwikkel deur gebruik te maak van analitiese metodes en wiskundige modellering. Die sedimentlewering voorspellingsmetodes kan gebruik word vir die beplanning en bestuur van waterbronne en veral vir damtoeslikking beheer. Die opvangsgebied erosie en die sedimentlewering modelleringsmetodes kan toegepas word in tydveranderlike en ruimtelike ontleding van sedimentlewering. Hierdie inligting word benodig vir die detail ontwerp van waterhulpbronne en veral vir die identifisering van kritiese erosiegebiede, bronne van sediment en die formulering van opvangsgebied-bestuur strategië. ‘n Literatuuroorsig oor die huidige metodes vir die voorspelling van erosie en sedimentlewering is gedoen. Nege sedimentasie streke is afgebaken in Suid-Afrika, gegrond op waargenome damtoeslikkingsdata en opvangsgebied-eienskappe. Proefondervindelike en waarskynlikheidsbenaderinge is ondersoek. Die waarskynlikheidsbenadering is gegrond op die ontleding van waargenome damtoeslikking wat bereken is uit reservoir opmeting data en rivier gesuspendeerde sediment data, asook data oor gronderosie. Die proefondervindelike metode se vergelykings is afgelei vanuit regressie ontleding van die veranderlikes wat ‘n belangrike invloed het op die erosie en sedimentlewering in Suid-Afrika. Daar is bevestig dat die ontwikkelde proefondervindelike (empiriese) vergelykings ‘n akkurate en betroubare voorspellingsvermoë in ses van die nege streke het. Die waarskynlikheidsbenadering is aanbeveel vir die voorspelling van sedimentlewering in die ander drie streke, waar betroubare regressie vergelykings nie afgelei kon word nie. Die voorspellingsakkuraatheid van albei metodes is nagegaan en bevestig deur gebruik te maak van die teenstrydigheidsverhouding en grafieke van die waargenome en berekende data. Analitiese metodes van sedimentleweringsvoorspelling is nodig vir ‘n volle opvangsgebied, terwyl wiskundige modellering om sedimentlewerings te voorspel gebruik kan word om ‘n meer in diepte ontleding van die sedimentlewering binne ‘n opvanggebied te doen. ‘n Evaluasie van beskikbare wiskundige modelle wat opvangsgebied sedimentlewering kan voorspel, is gedoen. Die hoofkriteria vir die keuse van ‘n model vir gebruik by gedetailleerde ontleding is gegrond op die volgende: die vermoëns van die model, wat verbruikers benodig en die aanwending van die model. Die SHETRAN model (Ewen et al., 2000) is spesifiek gekies weens sy vermoë om relatief groter opvangsgebiede te simuleer (dit kan opvangsgebiede van 1km2 tot 2500km2 wees) asook om erosie in kanale, dongas en grondverskuiwing simuleer. Dit kan toegepas word op ‘n wye reeks grondtipes en kan ook die gevolge simuleer as die gebruik van die grond verander. ‘n Ander model, ACRU (Smithers et al., 2002) is ook ondersoek. Die doel van die modelevaluering was om ‘n konseptuele begrip te kry van sedimentlewering modelleringsprosesse wat die opstelling, kalibrasie, toetsing en simulasies insluit. Die volledige evaluasie van SHETRAN is gedoen deur middel van ‘n gevalle-studie van die Glenmaggiedam in Australia. Die riviervloei is gekalibreer en getoets deur gebruik te maak van data wat strek van 1975 tot 1984, en van 1996 tot 2006 onderskeidelik. Die resultate van beide die kalibrasie en die toetswas redelik en betroubaar. Die sedimentlading is gekalibreer teen velddata van 1996 tot 2006. Die model is gebruik om bronne van sediment te identifiseer, asook gebiede met ‘n hoër sedimentlewering. Die gebruik van die grond op ‘n gekose sub-opvangsgebied is verander om die impak van grondgebruik en plantbedekking op sedimentlewering te ontleed. Die resultate bewys dat die SHETRAN model ‘n betroubare model is vir groot opvangsgebied sedimentlewering modellering, asook vir die simulasie van verskillende grondgebruike.
Grennstam, Nancy. "On Predicting Milk Yield and Detection of Ill Cows". Thesis, KTH, Reglerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107531.
Pełny tekst źródłaSmith, Leanne. "Predicting yield and profit losses from multispecies weed competition". Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388471.
Pełny tekst źródłaHuang, Di. "Predicting Recessions in the U.S. with Yield Curve Spread". Thesis, North Dakota State University, 2013. https://hdl.handle.net/10365/27126.
Pełny tekst źródłaHollinger, David L. "Crop Condition and Yield Prediction at the Field Scale with Geospatial and Artificial Neural Network Applications". Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310493197.
Pełny tekst źródłaGoodwin, Richard Philip. "Crop yield prediction in the UK using the reflected solar radiation". Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312374.
Pełny tekst źródłaCarrillo, Salazar Jose Alfredo. "An examination of the prediction of yield from two potato models". Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342033.
Pełny tekst źródłaSairi, Maryam. "Prediction and experimental validation of the char yield of crosslinked polybenzoxazines". Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/849422/.
Pełny tekst źródłaTrinh, Stephen. "Component-derived manufacturing yield prediction in circuit card design and assembly". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85774.
Pełny tekst źródłaThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 51).
Circuit card manufacturing can be a highly risky and volatile proposition due to the placement of hundreds of small, high value components. Operator mistakes, design errors, and defective parts lead to thousands of dollars in troubleshooting and rework costs per product. Raytheon Integrated Defense Systems (IDS) Circuit Card Assembly (CCA) manufactures highly complex circuit cards at a high mix / low volume scale for various purposes. Due to the high input variability and small production lot sizes of this level of circuit card manufacturing, historical trending and defect mitigation is difficult, causing a significant portion of CCA's manufacturing costs to be attributed to troubleshooting defects and rework. To mitigate these costs, yield prediction analysis software is utilized to predict potential manufacturing defect rates and first pass yields of new designs. This thesis describes the creation and testing of a new data analysis model for yield prediction. By gathering and processing data at an individual component level, the model can predict defect rates of designs at an assembly level. Collecting data at the individual component level drives more comprehensive component-based calculations, greatly improving yield prediction accuracy and thereby allowing cost effective circuit card designs to be created. The increase in prediction accuracy translates to a potential $250,000 saved annually for Raytheon CCA from early defect identification and removal. Updated data retrieval and calculation methods also allow for much easier model maintenance, thereby increasing the relevance of yield prediction. This model can be easily incorporated into other design software as a next step in creating comprehensive concurrent engineering tools.
by Stephen Trinh.
M.B.A.
S.M.
Qaddoum, Kefaya. "Intelligent real-time decision support systems for tomato yield prediction management". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58333/.
Pełny tekst źródłaWang, Guangyao (Sam), Mario Gutierrez, Michael J. Ottman i Kelly Thorp. "Durum wheat yield prediction at flowering stage for late N management". College of Agriculture, University of Arizona (Tucson, AZ), 2010. http://hdl.handle.net/10150/203775.
Pełny tekst źródłaGillett, A. G. "Modelling the response of winter wheat to different environments : a parsimonious approach". Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339658.
Pełny tekst źródłaTrigg, Deborah Anne. "The application of remote sensing to the prediction of sugar beet yield". Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278790.
Pełny tekst źródłaWagner, Nicole Catherine. "Wheat yield prediction modeling for localized optimization of fertilizer and herbicide application". Diss., Montana State University, 2004. http://etd.lib.montana.edu/etd/2004/wagner/WagnerN0805.pdf.
Pełny tekst źródłaMitchell, Hal Lee. "Predicting Pallet Part Yields From Hardwood Cants". Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/41288.
Pełny tekst źródłaMaster of Science
Martins, João Duarte Victor Franco. "Previsão da produção na casta Sauvignon Blanc com base nas componentes do rendimento". Master's thesis, ISA/UTL, 2011. http://hdl.handle.net/10400.5/4131.
Pełny tekst źródłaWith the objective of finding estimated yield models, it was collected data from yield components of a Sauvignon Blanc vineyard variety from Quinta do Pinto, Merceana, Denomination of Origin Alenquer, Lisboa wine region. The method was based on the sampling of 32 spaces that correspond to 192 vines in four different phenological stages (separated flowers, berry pea-size, veraison and ripe bunch). The data obtained was then submitted to an statistical analysis in order to find the correlation coefficients between the several variables and yield. The results indicate significant allometric relations between the inflorescences and bunches variables measured. The number of bunches explains most of the production variability (58%). Based on a stepwise regression, two models were obtained for yield estimation: One based on three variables measured during the berry pea-size stage which explains 57% of the yield variability and other based on two variables measured during the veraison that explain 76%. The model produced at veraison seems to be the more robust and includes fast and easy to determine on the field variables. These models, when adjusted, tend to be an useful tool, allowing early previsions in an easy and economical way.
Lawson, Elizabeth Anne. "Autologous Stem Cell Transplant: Factors Predicting the Yield of CD34+ Cells". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1144.pdf.
Pełny tekst źródłaIbrahim, Razi. "Predicting Potato Yield Loss Due to Metribuzin Sensitivity in North Dakota". Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28860.
Pełny tekst źródłaUSDA Specialty Block Grant Program
Hutcheson, Ryan Mitchell. "Quantitative prediction of dye fluorescence quantum yields in proteins". Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/hutcheson/HutchesonR0509.pdf.
Pełny tekst źródłaPickering, Andrew Mark. "Coal liquefaction : prediction of yields and behaviour of blends". Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339558.
Pełny tekst źródłaSubedi, Keshab. "Sugarbeet Yield and Quality Response to Nitrogen Fertilizer Rate and In-Season Prediction of Yield and Quality Using Active-Optical Sensor". Thesis, North Dakota State University, 2016. https://hdl.handle.net/10365/27958.
Pełny tekst źródłaAwano, Hiromitsu. "Variability in BTI-Induced Device Degradation: from Silicon Measurement to SRAM Yield Prediction". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215689.
Pełny tekst źródłaYun, Ilgu. "Reliability modeling and parametric yield prediction of GaAs multiple quantum well avalanche photodiodes". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12999.
Pełny tekst źródłaAdeyemi, Rasheed Alani. "Empirical statistical modelling for crop yields predictions: bayesian and uncertainty approaches". Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15533.
Pełny tekst źródłaThis thesis explores uncertainty statistics to model agricultural crop yields, in a situation where there are neither sampling observations nor historical record. The Bayesian approach to a linear regression model is useful for predict ion of crop yield when there are quantity data issue s and the model structure uncertainty and the regression model involves a large number of explanatory variables. Data quantity issues might occur when a farmer is cultivating a new crop variety, moving to a new farming location or when introducing a new farming technology, where the situation may warrant a change in the current farming practice. The first part of this thesis involved the collection of data from experts' domain and the elicitation of the probability distributions. Uncertainty statistics, the foundation of uncertainty theory and the data gathering procedures were discussed in detail. We proposed an estimation procedure for the estimation of uncertainty distributions. The procedure was then implemented on agricultural data to fit some uncertainty distributions to five cereal crop yields. A Delphi method was introduced and used to fit uncertainty distributions for multiple experts' data of sesame seed yield. The thesis defined an uncertainty distance and derived a distance for a difference between two uncertainty distributions. We lastly estimated the distance between a hypothesized distribution and an uncertainty normal distribution. Although, the applicability of uncertainty statistics is limited to one sample model, the approach provides a fast approach to establish a standard for process parameters. Where no sampling observation exists or it is very expensive to acquire, the approach provides an opportunity to engage experts and come up with a model for guiding decision making. In the second part, we fitted a full dataset obtained from an agricultural survey of small-scale farmers to a linear regression model using direct Markov Chain Monte Carlo (MCMC), Bayesian estimation (with uniform prior) and maximum likelihood estimation (MLE) method. The results obtained from the three procedures yielded similar mean estimates, but the credible intervals were found to be narrower in Bayesian estimates than confidence intervals in MLE method. The predictive outcome of the estimated model was then assessed using simulated data for a set of covariates. Furthermore, the dataset was then randomly split into two data sets. The informative prior was later estimated from one-half called the "old data" using Ordinary Least Squares (OLS) method. Three models were then fitted onto the second half called the "new data": General Linear Model (GLM) (M1), Bayesian model with a non-informative prior (M2) and Bayesian model with informative prior (M3). A leave-one-outcross validation (LOOCV) method was used to compare the predictive performance of these models. It was found that the Bayesian models showed better predictive performance than M1. M3 (with a prior) had moderate average Cross Validation (CV) error and Cross Validation (CV) standard error. GLM performed worst with least average CV error and highest (CV) standard error among the models. In Model M3 (expert prior), the predictor variables were found to be significant at 95% credible intervals. In contrast, most variables were not significant under models M1 and M2. Also, The model with informative prior had narrower credible intervals compared to the non-information prior and GLM model. The results indicated that variability and uncertainty in the data was reasonably reduced due to the incorporation of expert prior / information prior. We lastly investigated the residual plots of these models to assess their prediction performance. Bayesian Model Average (BMA) was later introduced to address the issue of model structure uncertainty of a single model. BMA allows the computation of weighted average over possible model combinations of predictors. An approximate AIC weight was then proposed for model selection instead of frequentist alternative hypothesis testing (or models comparison in a set of competing candidate models). The method is flexible and easy to interpret instead of raw AIC or Bayesian information criterion (BIC), which approximates the Bayes factor. Zellner's g-prior was considered appropriate as it has widely been used in linear models. It preserves the correlation structure among predictors in its prior covariance. The method also yields closed-form marginal likelihoods which lead to huge computational savings by avoiding sampling in the parameter space as in BMA. We lastly determined a single optimal model from all possible combination of models and also computed the log-likelihood of each model.
Ward, Brian Phillip. "Genomic Prediction and Genetic Dissection of Yield-Related Traits in Soft Red Winter Wheat". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85503.
Pełny tekst źródłaPh. D.
Williams, Sheryl R. "Site-specific energy prediction for photovoltaic devices". Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/28317.
Pełny tekst źródłaXu, Chang. "Index-Based Insurance, Informal Risk Sharing, and Agricultural Yields Prediction". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1529794733186832.
Pełny tekst źródłaStanford, Kim. "Prediction of lamb carcass composition and classification of Canadian lambs by saleable meat yield". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq29113.pdf.
Pełny tekst źródłaAl-Shammari, Dhahi Turki Jadah. "Remote sensing applications for crop type mapping and crop yield prediction for digital agriculture". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29771.
Pełny tekst źródłaJohnson, Andrew. "A Regression Metamodel To Replace SWAT In Crop Yield Prediction For Big Creek Watershed". OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1238.
Pełny tekst źródłaDaniel, Jean-Baptiste. "Dynamic prediction of milk yield and composition responses to dietary changes in dairy cows". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLA009/document.
Pełny tekst źródłaIn order to better cope with the increasing diversity of objective in dairy production (e.g. feed efficiency, animal health, animal longevity, etc.) in a context of high volatility of feed and milk prices, quantification of animal’s multiple responses to dietary changes is of particular interest to help dairy farmers in optimizing the diet. The main aim of the present study was to develop and evaluate a model to predict the responses in dry-matter intake, milk yield, milk component yields and contents to changes in dietary composition in dairy cows. A meta-analysis of the literature was conducted to quantify dry-matter intake response to changes in diet composition, and milk responses (yield, milk component yields and milk composition) to changes in dietary net energy (NEL) and metabolizable protein (MP) in dairy cows. A key point in the development of these response equations was that they could be apply on animals of varying production potential. This was achieved by expressing MP and NEL supply relative to a pivot nutritional status, defined as the supply of MP and NEL resulting to MP efficiency of 0.67 and NEL efficiency of 1. Based on MP and NEL efficiency, an approach was proposed to estimate the pivot MP and NEL supplies, around which the response equations can be applied. Evaluated with two independent datasets, this approach predicted milk yield and milk component yields responses to change in MP and NEL supply with a good accuracy for diets that are substantially different, and across all stages of lactation. In another model, the effect of physiological status (lactation stage, gestation, growth) on animal performance, i.e. milk yield, milk component yields, body composition change and dry-matter intake, were quantified across a range of animal potential. It was found that the model structure was adequate to simulate performance of different dairy breeds (Holstein, Danish Red and Jersey). To predict the long-term consequences of a dietary change, response equations, centred on the pivot nutritional status, were integrated into the dynamic model. This integration has been possible by applying the pivot concept into the dynamic model. This way, lactation pivot curves were calculated, from which response equations are applied. The model built is the first to integrate the two major biological regulations (homeostasis and homeorhesis) in dairy cows that predicts animal performance using a precise definition of milk potential
Zaytsev, Michael. "Predicting Enrollment Decisions of Students Admitted to Claremont McKenna College". Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/cmc_theses/107.
Pełny tekst źródłaLiu, Guozheng [Verfasser]. "Genome-wide prediction of hybrid performance and yield stability analysis in winter wheat / Guozheng Liu". Halle, 2018. http://d-nb.info/116051447X/34.
Pełny tekst źródłaPasman, Egbert Jan. "The development of control and prediction systems for milk yield and mastitis from field data". Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359436.
Pełny tekst źródłaVan, Acker Rene C. "Multiple-weed species interference in broadleaved crops : evaluation of yield loss prediction and competition models". Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308562.
Pełny tekst źródłaJenni, Sylvie. "Predicting yield and development of muskmelon, Cucumis melo L., under mulch and rowcover management". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0011/NQ30303.pdf.
Pełny tekst źródłaJenni, Sylvie. "Predicting yield and development of muskmelon (Cucumis melo L.) under mulch and rowcover management". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=42061.
Pełny tekst źródłaPoole, Warren J., B. Raeisinia, X. Wang i D. J. Lloyd. "A model for predicting the yield stress of AA6111 after multi-step heat treatments". Springer, 2006. http://hdl.handle.net/2429/398.
Pełny tekst źródłaMACHADO, URSULLA MONTEIRO DA SILVA BELLOTE. "A HIERARCHICAL FACTOR MODEL FOR THE JOINT PREDICTION OF CORPORATE BOND YIELDS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19535@1.
Pełny tekst źródłaO objetivo deste trabalho é a construção de um modelo integrado para previsão da estrutura a termo da taxa de juros, referentes a títulos corporativos americanos para diferentes níveis de risco. A metodologia é baseada no modelo de Nelson e Siegel (1987), com extensões propostas por Diebold e Li (2006) e Diebold, Li e Yue (2008). Modelamos a estrutura a termo para 14 níveis de risco e estimamos conjuntamente os fatores latentes de nível e inclinação que governam a dinâmica das taxas, para a posterior estimação de dois super fatores, que por sua vez, conduzem a trajetória de cada fator, onde está centrada a nossa principal inovação. A previsão da curva de juros é então construída a partir da previsão dos super fatores, modelados por processos auto-regressivos, como sugere Diebold e Li (2006). Através dos super fatores extrapolados da amostra reconstruímos, na forma da previsão, os fatores latentes e a própria taxa de juros. Além da previsão fora da amostra, comparamos a eficiência do modelo proposto com o modelo mais tradicional da literatura, o passeio aleatório. Pela comparação, não obtivemos ganhos significativos em relação a esse competidor, principalmente na previsão um passo a frente. Resultados melhores foram obtidos aumentando o horizonte de previsão, mas não sendo capaz de superar o passeio aleatório.
This dissertation constructs an integrated model for interest rate term structure forecast for American corporate bonds associated with different risk levels. Our methodology is primarily based on Nelson and Siegel (1987) and presents extensions proposed in Diebold and Li (2006) and Diebold, Li and Yue (2008). We model the term structure for 14 risk levels and we jointly estimate the level and slope latent factors that drive interest rates dynamics. These factors are then used in the estimation of two super factors which is our main innovation. The yield curve forecast is then determinate from the forecast of the super factors, described by autoregressive processes, as suggested by Diebold and Li (2006). Through the super factors forecast, reconstructed in the form of forecasting the latent factors and their own interest rate. Our results focus on the model’s out of sample forecast and efficiency compared with the random walk model, considered the benchmark model in this type of literature. Our results provide evidence that the proposed models shows no significant gains in relation to the benchmark, especially in predicting one month ahead. Better results were obtained by increasing the forecast horizon, but not being able to overcome the random walk.
Oliver, Rebecca Joy. "Predicting the yield and water-use of poplar short rotation coppice under a future climate". Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/188255/.
Pełny tekst źródłaMunyaradzi, Sipho Musevenzo Ward Andrew D. "Predicting soil water deficits and crop yields for Seneca County 1988 /". Connect to resource, 1991. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1145449951.
Pełny tekst źródłaMunyaradzi, Sipho Musevenzo. "Predicting soil water deficits and crop yields for Seneca County 1988". The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1145449951.
Pełny tekst źródła