Artykuły w czasopismach na temat „Yield predictions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Yield predictions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Yadav, Kamini, i Hatim M. E. Geli. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period". Land 10, nr 12 (15.12.2021): 1389. http://dx.doi.org/10.3390/land10121389.
Pełny tekst źródłaMia, Md Suruj, Ryoya Tanabe, Luthfan Nur Habibi, Naoyuki Hashimoto, Koki Homma, Masayasu Maki, Tsutomu Matsui i Takashi S. T. Tanaka. "Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data". Remote Sensing 15, nr 10 (10.05.2023): 2511. http://dx.doi.org/10.3390/rs15102511.
Pełny tekst źródłaChatterjee, Sabyasachi, Swarup Kumar Mondal, Anupam Datta i Hritik Kumar Gupta. "Enhancing Feature Optimization for Crop Yield Prediction Models". Current Agriculture Research Journal 12, nr 2 (10.09.2024): 739–49. http://dx.doi.org/10.12944/carj.12.2.19.
Pełny tekst źródłaUlfa, Fathiyya, Thomas G. Orton, Yash P. Dang i Neal W. Menzies. "Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models". Agronomy 12, nr 2 (3.02.2022): 384. http://dx.doi.org/10.3390/agronomy12020384.
Pełny tekst źródłaLutman, Peter J. W., Ruth Risiott i H. Peter Ostermann. "Investigations into Alternative Methods to Predict the Competitive Effects of Weeds on Crop Yields". Weed Science 44, nr 2 (czerwiec 1996): 290–97. http://dx.doi.org/10.1017/s0043174500093917.
Pełny tekst źródłaYan, Zhangpeng, Weimin Zhai i Chao Li. "A novel motherboard test item yield prediction model based on parallel feature extraction". Journal of Physics: Conference Series 2816, nr 1 (1.08.2024): 012078. http://dx.doi.org/10.1088/1742-6596/2816/1/012078.
Pełny tekst źródłaGrzesiak, W., R. Lacroix, J. Wójcik i P. Blaszczyk. "A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records". Canadian Journal of Animal Science 83, nr 2 (1.06.2003): 307–10. http://dx.doi.org/10.4141/a02-002.
Pełny tekst źródłaVishwajeet Singh, Med Ram Verma i Subhash Kumar Yadav. "PREDICTIVE MODELLING FOR SUGARCANE PRODUCTION: A COMPREHENSIVE COMPARISON OF ARIMA AND MACHINE LEARNING ALGORITHMS". Applied Biological Research 26, nr 2 (30.05.2024): 199–209. http://dx.doi.org/10.48165/abr.2024.26.01.23.
Pełny tekst źródłaEngen, Martin, Erik Sandø, Benjamin Lucas Oscar Sjølander, Simon Arenberg, Rashmi Gupta i Morten Goodwin. "Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks". Agronomy 11, nr 12 (18.12.2021): 2576. http://dx.doi.org/10.3390/agronomy11122576.
Pełny tekst źródłaSemenov, Mikhail A., Rowan A. C. Mitchell, Andrew P. Whitmore, Malcolm J. Hawkesford, Martin A. J. Parry i Peter R. Shewry. "Shortcomings in wheat yield predictions". Nature Climate Change 2, nr 6 (11.04.2012): 380–82. http://dx.doi.org/10.1038/nclimate1511.
Pełny tekst źródłaXu, Chang, i Ani L. Katchova. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model". Journal of Agricultural and Applied Economics 51, nr 3 (21.05.2019): 402–16. http://dx.doi.org/10.1017/aae.2019.5.
Pełny tekst źródłaSon, D. V. "SOIL YIELD FORECASTING". Bulletin of Shakarim University. Technical Sciences 1, nr 4(16) (27.12.2024): 72–80. https://doi.org/10.53360/2788-7995-2024-4(16)-10.
Pełny tekst źródłaYildirim, Tugba, Daniel N. Moriasi, Patrick J. Starks i Debaditya Chakraborty. "Using Artificial Neural Network (ANN) for Short-Range Prediction of Cotton Yield in Data-Scarce Regions". Agronomy 12, nr 4 (29.03.2022): 828. http://dx.doi.org/10.3390/agronomy12040828.
Pełny tekst źródłaRawat, Meenakshi, Vaishali Sharda, Xiaomao Lin i Kraig Roozeboom. "Climate Change Impacts on Rainfed Maize Yields in Kansas: Statistical vs. Process-Based Models". Agronomy 13, nr 10 (6.10.2023): 2571. http://dx.doi.org/10.3390/agronomy13102571.
Pełny tekst źródłaSchimleck, Laurence R., Peter D. Kube, Carolyn A. Raymond, Anthony J. Michell i Jim French. "Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores". Canadian Journal of Forest Research 35, nr 12 (1.12.2005): 2797–805. http://dx.doi.org/10.1139/x05-193.
Pełny tekst źródłaJeschke, Mark R., David E. Stoltenberg, George O. Kegode, Christy L. Sprague, Stevan Z. Knezevic, Shawn M. Hock i Gregg A. Johnson. "Predicted Soybean Yield Loss As Affected by Emergence Time of Mixed-Species Weed Communities". Weed Science 59, nr 3 (wrzesień 2011): 416–23. http://dx.doi.org/10.1614/ws-d-10-00129.1.
Pełny tekst źródłaChen, Yang, Tim R. McVicar, Randall J. Donohue, Nikhil Garg, François Waldner, Noboru Ota, Lingtao Li i Roger Lawes. "To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction". Remote Sensing 12, nr 10 (21.05.2020): 1653. http://dx.doi.org/10.3390/rs12101653.
Pełny tekst źródłaMeng, Linghua, Huanjun Liu, Susan L. Ustin i Xinle Zhang. "Predicting Maize Yield at the Plot Scale of Different Fertilizer Systems by Multi-Source Data and Machine Learning Methods". Remote Sensing 13, nr 18 (19.09.2021): 3760. http://dx.doi.org/10.3390/rs13183760.
Pełny tekst źródłaJHAJHARIA, KAVITA. "Wheat yield prediction of Rajasthan using climatic and satellite data and machine learning techniques". Journal of Agrometeorology 27, nr 1 (1.03.2025): 63–66. https://doi.org/10.54386/jam.v27i1.2807.
Pełny tekst źródłaPeng, Dailiang, Enhui Cheng, Xuxiang Feng, Jinkang Hu, Zihang Lou, Hongchi Zhang, Bin Zhao, Yulong Lv, Hao Peng i Bing Zhang. "A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data". Remote Sensing 16, nr 19 (27.09.2024): 3613. http://dx.doi.org/10.3390/rs16193613.
Pełny tekst źródłaLinkesh, Monisha, Minakshi Ghorpade i Pratibha Prasad. "Jowar and Wheat Yield Prediction using a Wavelet based Fusion of Landsat and Sentinel Data with Meteorological Parameters". Indian Journal Of Science And Technology 17, nr 17 (14.04.2024): 1791–99. http://dx.doi.org/10.17485/ijst/v17i17.413.
Pełny tekst źródłaLou, Zhengfang, Xiaoping Lu i Siyi Li. "Yield Prediction of Winter Wheat at Different Growth Stages Based on Machine Learning". Agronomy 14, nr 8 (20.08.2024): 1834. http://dx.doi.org/10.3390/agronomy14081834.
Pełny tekst źródłaAzizah, Nurul, Sri Suhartini i Irnia Nurika. "Optimization of Vanillin Extraction from Biodegradation of Oil Palm Empty Fruit Bunches by Serpula lacrymans". Industria: Jurnal Teknologi dan Manajemen Agroindustri 10, nr 1 (29.04.2021): 33–40. http://dx.doi.org/10.21776/ub.industria.2021.010.01.4.
Pełny tekst źródłaSadenova, Marzhan, Nail Beisekenov, Petar Sabev Varbanov i Ting Pan. "Application of Machine Learning and Neural Networks to Predict the Yield of Cereals, Legumes, Oilseeds and Forage Crops in Kazakhstan". Agriculture 13, nr 6 (3.06.2023): 1195. http://dx.doi.org/10.3390/agriculture13061195.
Pełny tekst źródłaKostyra, Tomasz Piotr. "Forecasting the yield curve for Poland with the PCA and machine learning". Bank i Kredyt Vol. 55, No. 4 (31.08.2024): 459–78. http://dx.doi.org/10.5604/01.3001.0054.8580.
Pełny tekst źródłaPravallika, K., G. Karuna, K. Anuradha i V. Srilakshmi. "Deep Neural Network Model for Proficient Crop Yield Prediction". E3S Web of Conferences 309 (2021): 01031. http://dx.doi.org/10.1051/e3sconf/202130901031.
Pełny tekst źródłaBarton, N., P. Dawson i M. Miller. "Yield Strength Asymmetry Predictions From Polycrystal Elastoplasticity". Journal of Engineering Materials and Technology 121, nr 2 (1.04.1999): 230–39. http://dx.doi.org/10.1115/1.2812370.
Pełny tekst źródłaAyu Siregar, Silviana, i Yusuf Ramadhan Nasution. "Prediction of Rice Farming Yields in Padangsidimpuan City through Support Vector Machine (SVM) Algorithms". JINAV: Journal of Information and Visualization 5, nr 1 (10.08.2024): 146–56. https://doi.org/10.35877/454ri.jinav2876.
Pełny tekst źródłaFeng, Yu, Wen Lin, Shaobo Yu, Aixia Ren, Qiang Wang, Hafeez Noor, Jianfu Xue, Zhenping Yang, Min Sun i Zhiqiang Gao. "Effects of fallow tillage on winter wheat yield and predictions under different precipitation types". PeerJ 9 (8.12.2021): e12602. http://dx.doi.org/10.7717/peerj.12602.
Pełny tekst źródłaXavier, Alencar, i Katy M. Rainey. "Quantitative Genomic Dissection of Soybean Yield Components". G3: Genes|Genomes|Genetics 10, nr 2 (9.12.2019): 665–75. http://dx.doi.org/10.1534/g3.119.400896.
Pełny tekst źródłaHuber, Florian, Alvin Inderka i Volker Steinhage. "Leveraging Remote Sensing Data for Yield Prediction with Deep Transfer Learning". Sensors 24, nr 3 (24.01.2024): 770. http://dx.doi.org/10.3390/s24030770.
Pełny tekst źródłaPazhanivelan, Sellaperumal, N. S. Sudarmanian, S. Satheesh i K. P. Ragunath. "Innovative Approaches to Bengal gram Yield Mapping: Integration of Sentinel-1 SAR and Crop Simulation Models for Precision Agriculture". Journal of Scientific Research and Reports 31, nr 1 (25.01.2025): 449–60. https://doi.org/10.9734/jsrr/2025/v31i12788.
Pełny tekst źródłaGupta, Soma, Satarupa Mohanty i Dayal Kumar Behera. "AI-based Yield Prediction: A Thorough Review". Indian Journal Of Science And Technology 18, nr 10 (16.03.2025): 822–38. https://doi.org/10.17485/ijst/v18i10.175.
Pełny tekst źródłaErik, E., M. Durmaz i A. Ö. Ok. "IN AND END OF SEASON SOYBEAN YIELD PREDICTION WITH HISTOGRAM BASED DEEP LEARNING". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-1-2023 (21.04.2023): 95–100. http://dx.doi.org/10.5194/isprs-archives-xlviii-m-1-2023-95-2023.
Pełny tekst źródłaKalpana, P., I. Anusha Prem, S. Josephine Reena Mary i ArockiaValan Rani. "Crop Yield Prediction Using Machine Learning". REST Journal on Data Analytics and Artificial Intelligence 2, nr 1 (1.03.2023): 16–20. http://dx.doi.org/10.46632/jdaai/2/1/3.
Pełny tekst źródłaKalpana, P., I. Anusha Prem, S. Josephine Reena Mary i ArockiaValan Rani. "Crop Yield Prediction Using Machine Learning". REST Journal on Data Analytics and Artificial Intelligence 2, nr 1 (1.03.2023): 16–20. http://dx.doi.org/10.46632/10.46632/jdaai/2/1/3.
Pełny tekst źródłaNagesh, V. "CROP RECOMMENDATION SYSTEM USING KNN ALGORITHM AND RANDOM FOREST". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, nr 12 (1.12.2023): 1–11. http://dx.doi.org/10.55041/ijsrem27660.
Pełny tekst źródłaHock, Shawn M., Stevan Z. Knezevic, William G. Johnson, Christy Sprague i Alex R. Martin. "WeedSOFT: Effects of Corn-Row Spacing for Predicting Herbicide Efficacy on Selected Weed Species". Weed Technology 21, nr 1 (marzec 2007): 219–24. http://dx.doi.org/10.1614/wt-06-008.1.
Pełny tekst źródłaSreekanth, S. "HarvestMax: A Predictive Model for Crop Yield and Fertilizer Optimization". International Journal for Research in Applied Science and Engineering Technology 12, nr 4 (30.04.2024): 2841–47. http://dx.doi.org/10.22214/ijraset.2024.60339.
Pełny tekst źródłaBi, Hele, Jiale Jiang, Junzhao Chen, Xiaojun Kuang i Jinxiao Zhang. "Machine Learning Prediction of Quantum Yields and Wavelengths of Aggregation-Induced Emission Molecules". Materials 17, nr 7 (4.04.2024): 1664. http://dx.doi.org/10.3390/ma17071664.
Pełny tekst źródłaKarthikeyan, R., M. Gowthami, A. Abhishhek i P. Karthikeyan. "Implementation of Effective Crop Selection by Using the Random Forest Algorithm". International Journal of Engineering & Technology 7, nr 3.34 (1.09.2018): 287. http://dx.doi.org/10.14419/ijet.v7i3.34.19209.
Pełny tekst źródłaCao, Junjun, Huijing Wang, Jinxiao Li, Qun Tian i Dev Niyogi. "Improving the Forecasting of Winter Wheat Yields in Northern China with Machine Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction". Remote Sensing 14, nr 7 (1.04.2022): 1707. http://dx.doi.org/10.3390/rs14071707.
Pełny tekst źródłaHUNDAL, S. S., i PRABHJYOT-KAUR. "Application of the CERES–Wheat model to yield predictions in the irrigated plains of the Indian Punjab". Journal of Agricultural Science 129, nr 1 (sierpień 1997): 13–18. http://dx.doi.org/10.1017/s0021859697004462.
Pełny tekst źródłaOrduna-Cabrera, Fernando, Alejandro Rios-Ochoa, Federico Frank, Soeren Lindner, Marcial Sandoval-Gastelum, Michael Obersteiner i Valeria Javalera-Rincon. "Short-Term Forecasting Arabica Coffee Cherry Yields by Seq2Seq over LSTM for Smallholder Farmers". Sustainability 17, nr 9 (25.04.2025): 3888. https://doi.org/10.3390/su17093888.
Pełny tekst źródłaKacar, Ilyas, Fahrettin Ozturk, Serkan Toros i Suleyman Kilic. "Prediction of Strain Limits via the Marciniak-Kuczynski Model and a Novel Semi-Empirical Forming Limit Diagram Model for Dual-Phase DP600 Advanced High Strength Steel". Strojniški vestnik – Journal of Mechanical Engineering 66, nr 10 (15.10.2020): 602–12. http://dx.doi.org/10.5545/sv-jme.2020.6755.
Pełny tekst źródłaZiliani, M. G., M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit i M. F. McCabe. "INTRA-FIELD CROP YIELD VARIABILITY BY ASSIMILATING CUBESAT LAI IN THE APSIM CROP MODEL". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (30.05.2022): 1045–52. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-1045-2022.
Pełny tekst źródłaSpejewski, E. H., H. K. Carter, B. Mervin, E. Prettyman, A. Kronenberg i D. W. Stracener. "ISOL yield predictions from holdup-time measurements". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, nr 19-20 (październik 2008): 4271–74. http://dx.doi.org/10.1016/j.nimb.2008.05.048.
Pełny tekst źródłaHara, Patryk, Magdalena Piekutowska i Gniewko Niedbała. "Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks". Agriculture 13, nr 3 (12.03.2023): 661. http://dx.doi.org/10.3390/agriculture13030661.
Pełny tekst źródłaHina, Firdous, i Dr Mohd Tahseenul Hasan. "Agriculture Crop Yield Prediction Using Machine Learning". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 910–15. http://dx.doi.org/10.22214/ijraset.2022.41381.
Pełny tekst źródłaSharma, Suresh Kumar, Durga Prasad Sharma i Kiran Gaur. "Machine Learning Techniques for Crop Yield Forecasting in Semi-Arid (3A) Zone, Rajasthan (India)". Current Agriculture Research Journal 11, nr 3 (5.01.2024): 895–914. http://dx.doi.org/10.12944/carj.11.3.19.
Pełny tekst źródła