Gotowa bibliografia na temat „Zeros of zeta function”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Zeros of zeta function”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Zeros of zeta function"

1

Garunkštis, Ramūnas, and Joern Steuding. "QUESTIONS AROUND THE NONTRIVIAL ZEROS OF THE RIEMANN ZETA-FUNCTION. COMPUTATIONS AND CLASSIFICATIONS." Mathematical Modelling and Analysis 16, no. 1 (2011): 72–81. http://dx.doi.org/10.3846/13926292.2011.560616.

Pełny tekst źródła
Streszczenie:
We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of zeros of other related functions, namely, the Hurwitz zeta-function and the derivative of Riemann's zeta-function. Finally, we investigate connections of the nontrivial zeros with the periodic zeta-function. On the basis of computation we derive several classifications of the nontrivial zeros of the Riemann zeta-function and stateproblems which mightbe ofinterestfor abetter understanding of the distribution of those zeros.
Style APA, Harvard, Vancouver, ISO itp.
2

Sekatskii, Sergey. "On the Sums over Inverse Powers of Zeros of the Hurwitz Zeta Function and Some Related Properties of These Zeros." Symmetry 16, no. 3 (2024): 326. http://dx.doi.org/10.3390/sym16030326.

Pełny tekst źródła
Streszczenie:
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, and elliptical functions. Here, the same theorem is applied to study such sums for the zeros of the Hurwitz zeta function ζ(s,z), including the sum over the inverse first power of its appropriately defined non-trivial zeros. We also study some related properties of the Hurwitz zeta function zeros. In particular, we show that, for any natural N
Style APA, Harvard, Vancouver, ISO itp.
3

HASSEN, ABDUL, and HIEU D. NGUYEN. "A ZERO-FREE REGION FOR HYPERGEOMETRIC ZETA FUNCTIONS." International Journal of Number Theory 07, no. 04 (2011): 1033–43. http://dx.doi.org/10.1142/s1793042111004678.

Pełny tekst źródła
Streszczenie:
This paper investigates the location of "trivial" zeros of some hypergeometric zeta functions. Analogous to Riemann's zeta function, we demonstrate that they possess a zero-free region on a left-half complex plane, except for infinitely many zeros regularly spaced on the negative real axis.
Style APA, Harvard, Vancouver, ISO itp.
4

Cox, Darrell. "Companion Riemann Zeta Function Zeros." Global Journal of Pure and Applied Mathematics 20, no. 3 (2024): 617–41. https://doi.org/10.37622/gjpam/20.3.2024.617-641.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bayer, Pilar. "La hipòtesi de Riemann: El gran repte pendent." Mètode Revista de difusió de la investigació, no. 8 (June 5, 2018): 35. http://dx.doi.org/10.7203/metode.0.8903.

Pełny tekst źródła
Streszczenie:
The Riemann hypothesis is an unproven statement referring to the zeros of the Riemann zeta function. Bernhard Riemann calculated the first six non-trivial zeros of the function and observed that they were all on the same straight line. In a report published in 1859, Riemann stated that this might very well be a general fact. The Riemann hypothesis claims that all non-trivial zeros of the zeta function are on the the line x = 1/2. The more than ten billion zeroes calculated to date, all of them lying on the critical line, coincide with Riemann’s suspicion, but no one has yet been able to prove
Style APA, Harvard, Vancouver, ISO itp.
6

Pushkarev, Petr. "Constant quality of the Riemann zeta's non-trivial zeros." Global Journal of Pure and Applied Mathematics 13, no. 6 (2017): 1987–92. https://doi.org/10.5281/zenodo.822059.

Pełny tekst źródła
Streszczenie:
In this article we are closely examining Riemann zeta function's non-trivial zeros. Especially, we examine real part of non-trivial zeros. Real part of Riemann zeta function's non-trivial zeros is considered in the light of constant quality of such zeros. We propose and prove a theorem of this quality. We also uncover a definition phenomenons of zeta and Riemann xi functions. In conclusion and as an conclusion we observe Riemann hypothesis in perspective of our researches.
Style APA, Harvard, Vancouver, ISO itp.
7

SUZUKI, MASATOSHI. "A RELATION BETWEEN THE ZEROS OF TWO DIFFERENT L-FUNCTIONS WHICH HAVE AN EULER PRODUCT AND FUNCTIONAL EQUATION." International Journal of Number Theory 01, no. 03 (2005): 401–29. http://dx.doi.org/10.1142/s1793042105000248.

Pełny tekst źródła
Streszczenie:
As automorphic L-functions or Artin L-functions, several classes of L-functions have Euler products and functional equations. In this paper we study the zeros of L-functions which have Euler products and functional equations. We show that there exists a relation between the zeros of the Riemann zeta-function and the zeros of such L-functions. As a special case of our results, we find relations between the zeros of the Riemann zeta-function and the zeros of automorphic L-functions attached to elliptic modular forms or the zeros of Rankin–Selberg L-functions attached to two elliptic modular form
Style APA, Harvard, Vancouver, ISO itp.
8

Bialas, P., Z. Burda, and D. A. Johnston. "Partition function zeros of zeta-urns." Condensed Matter Physics 27, no. 3 (2024): 33601. http://dx.doi.org/10.5488/cmp.27.33601.

Pełny tekst źródła
Streszczenie:
We discuss the distribution of partition function zeros for the grand-canonical ensemble of the zeta-urn model, where tuning a single parameter can give a first or any higher order condensation transition. We compute the locus of zeros for finite-size systems and test scaling relations describing the accumulation of zeros near the critical point against theoretical predictions for both the first and higher order transition regimes.
Style APA, Harvard, Vancouver, ISO itp.
9

DUBICKAS, A., R. GARUNKŠTIS, J. STEUDING, and R. STEUDING. "ZEROS OF THE ESTERMANN ZETA FUNCTION." Journal of the Australian Mathematical Society 94, no. 1 (2013): 38–49. http://dx.doi.org/10.1017/s1446788712000419.

Pełny tekst źródła
Streszczenie:
AbstractIn this paper we investigate the zeros of the Estermann zeta function $E(s; k/ \ell , \alpha )= { \mathop{\sum }\nolimits}_{n= 1}^{\infty } {\sigma }_{\alpha } (n) \exp (2\pi ink/ \ell ){n}^{- s} $ as a function of a complex variable $s$, where $k$ and $\ell $ are coprime integers and ${\sigma }_{\alpha } (n)= {\mathop{\sum }\nolimits}_{d\vert n} {d}^{\alpha } $ is the generalized divisor function with a fixed complex number $\alpha $. In particular, we study the question on how the zeros of $E(s; k/ \ell , \alpha )$ depend on the parameters $k/ \ell $ and $\alpha $. It turns out that
Style APA, Harvard, Vancouver, ISO itp.
10

Nakai, Keita. "Discrete universality theorem for Matsumoto zeta-functions and nontrivial zeros of the Riemann zeta-function." Mathematical Modelling and Analysis 30, no. 1 (2025): 97–108. https://doi.org/10.3846/mma.2025.20817.

Pełny tekst źródła
Streszczenie:
In 2017, Garunkštis, Laurinčikas and Macaitienė proved the discrete universality theorem for the Riemann zeta-function shifted by imaginary parts of nontrivial zeros of the Riemann zeta-function. This discrete universality has been extended to various zeta-functions and L-functions. In this paper, we generalize this discrete universality for Matsumoto zeta-functions.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Zeros of zeta function"

1

Steuding, Jörn. "On simple zeros of the Riemann zeta-function." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95589820X.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Diaz-Vargas, Javier Arturo 1952. "On zeros of characteristic p zeta functions." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290585.

Pełny tekst źródła
Streszczenie:
The location and multiplicity of the zeros of zeta functions encode interesting arithmetic information. We study characteristic p zeta functions of Carlitz and Goss. We present a simpler proof of the fact that "non-trivial" zeros of a characteristic p zeta function satisfy Goss' analogue of the Riemann Hypothesis for F(q)[T]. We also prove simplicity of these zeros, and give partial results for F(q)[T] where q is not necessarily prime. Then we focus on "trivial" zeros, but for characteristic p zeta functions for general function fields over finite fields. Here, we prove a theorem on zeros at n
Style APA, Harvard, Vancouver, ISO itp.
3

Wu, Dongsheng. "Eigenvalues of Differential Operators and Nontrivial Zeros of L-functions." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8729.

Pełny tekst źródła
Streszczenie:
The Hilbert-P\'olya conjecture asserts that the non-trivial zeros of the Riemann zeta function $\zeta(s)$ correspond (in a certain canonical way) to the eigenvalues of some positive operator. R. Meyer constructed a differential operator $D_-$ acting on a function space $\H$ and showed that the eigenvalues of the adjoint of $D_-$ are exactly the nontrivial zeros of $\zeta(s)$ with multiplicity correspondence. We follow Meyer's construction with a slight modification. Specifically, we define two function spaces $\H_\cap$ and $\H_-$ on $(0,\infty)$ and characterize them via the Mellin transform.
Style APA, Harvard, Vancouver, ISO itp.
4

Gulas, Michael Allen. "Using Hilbert Space Theory and Quantum Mechanics to Examine the Zeros of The Riemann-Zeta Function." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1594035551136634.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Šimėnas, Raivydas. "Riemann'o hipotezės Speiser'io ekvivalentas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20140704_171541-67476.

Pełny tekst źródła
Streszczenie:
A. Speiser'is parodė, kad Riemann'o hipotezė yra ekvivalenti tam, kad Riemann'o dzeta funkcijos išvestinė neturi netrivialių nulių į kairę nuo kritinės tiesės. Kiekybinis šio fakto rezultatas buvo pasiektas N. Levinsono ir H. Montgomerio. Šie rezultatai buvo apibendrinti daugeliui dzeta funkcijų, kurioms tikimasi, kad Riemann'o hipotezė galioja. Šiame darbe mes apibendriname Speiser'io ekvivalentą dzeta-funkcijoms. Mes tiriame sąryšį tarp netrivialių nulių išplėstinės Selbergo klasės funkcijoms ir jų išvestinėms šiame regione. Šiai klasei priklauso ir funkcijos, kurioms Riemann'o hipotezė nete
Style APA, Harvard, Vancouver, ISO itp.
6

Newland, Derek B. "Kernels in the Selberg trace formula on the k-regular tree and zeros of the Ihara zeta function /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3189204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bredberg, Johan. "On large gaps between consecutive zeros, on the critical line, of some zeta-functions." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3e744bbd-c947-405c-b519-4808c8c5a73e.

Pełny tekst źródła
Streszczenie:
In this thesis we extend a method of Hall $[30, 34]$ which he used to show the existence of large gaps between consecutive zeros, on the critical line, of the Riemann zeta-function $zeta(s)$. Our modification involves introducing an "amplifier" and enables us to show the existence of gaps between consecutive zeros, on the critical line at height $T,$ of $zeta(s)$ of length at least $2.766 x (2pi/log{T})$. To handle some integral-calculations, we use the article $[44]$ by Hughes and Young. Also, we show that Hall's strategy can be applied not only to $zeta(s),$ but also to Dirichlet $L$-functio
Style APA, Harvard, Vancouver, ISO itp.
8

Alvites, José Carlos Valencia. "Hipótese de Riemann e física." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/.

Pełny tekst źródła
Streszczenie:
Neste trabalho, introduzimos a função zeta de Riemann \'ZETA\'(s), para s \'PERTENCE\' C \\ e apresentamos muito do que é conhecido como justificativa para a hipótese de Riemann. A importância de \'ZETA\' (s) para a teoria analítica dos números é enfatizada e fornecemos uma prova conhecida do Teorema dos Números Primos. No final, discutimos a importância de \'ZETA\'(s) para alguns modelos físicos de interesse e concluimos descrevendo como a hipótese de Riemann pode ser acessada estudando estes sistemas<br>In this work, we introduce the Riemann zeta function \'ZETA\'(s), s \'IT BELONGS\' C \\
Style APA, Harvard, Vancouver, ISO itp.
9

Alcántara, Bode Julio. "A conjecture about the non-trivial zeroes of the Riemann zeta function." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/97185.

Pełny tekst źródła
Streszczenie:
Some heuristic arguments are given in support of the following conjecture: If the Riemann Hypothesis (RH) does not hold then the number of zeroes of the Riemann zeta function with real part σ >  ½ is infinite.
Style APA, Harvard, Vancouver, ISO itp.
10

Reyes, Ernesto Oscar. "The Riemann zeta function." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2648.

Pełny tekst źródła
Streszczenie:
The Riemann Zeta Function has a deep connection with the distribution of primes. This expository thesis will explain the techniques used in proving the properties of the Rieman Zeta Function, its analytic continuation to the complex plane, and the functional equation that the the Riemann Zeta Function satisfies.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Zeros of zeta function"

1

Voros, André. Zeta Functions over Zeros of Zeta Functions. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05203-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

1967-, Van Frankenhuysen Machiel, ed. Fractal geometry and number theory: Complex dimensions of fractal strings and zeros of zeta functions. Birkhäuser, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Laurinčikas, Antanas, and Ramūnas Garunkštis. The Lerch Zeta-function. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-6401-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ramūnas, Garunkštis, ed. The Lerch zeta-function. Kluwer Academic Publishers, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Montgomery, Hugh, Ashkan Nikeghbali, and Michael Th Rassias, eds. Exploring the Riemann Zeta Function. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59969-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Keating, Jonathan P. Resummation and the turning-points of zeta function. Hewlett Packard, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Motohashi, Y. Spectral theory of the Riemann zeta-function. Cambridge University Press, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Laurinčikas, Antanas. Limit theorems for the Riemann zeta-function. Kluwer Academic, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Laurinčikas, Antanas. Limit Theorems for the Riemann Zeta-Function. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2091-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

R, Heath-Brown D., ed. The theory of the Riemann zeta-function. 2nd ed. Clarendon Press, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Zeros of zeta function"

1

Laurinčikas, Antanas, and Ramūnas Garunkštis. "Distribution of Zeros." In The Lerch Zeta-function. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-6401-8_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Iwaniec, H. "Detecting critical zeros." In Lectures on the Riemann Zeta Function. American Mathematical Society, 2014. http://dx.doi.org/10.1090/ulect/062/17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Iwaniec, H. "Zeros off the critical line." In Lectures on the Riemann Zeta Function. American Mathematical Society, 2014. http://dx.doi.org/10.1090/ulect/062/14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Iwaniec, H. "Zeros on the critical line." In Lectures on the Riemann Zeta Function. American Mathematical Society, 2014. http://dx.doi.org/10.1090/ulect/062/15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Karabulut, Yunus, and Cem Yalçın Yıldırım. "Some Analogues of Pair Correlation of Zeta Zeros." In Exploring the Riemann Zeta Function. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59969-4_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Iwaniec, H. "The product formula over the zeros." In Lectures on the Riemann Zeta Function. American Mathematical Society, 2014. http://dx.doi.org/10.1090/ulect/062/08.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Iwaniec, H. "Positive proportion of the critical zeros." In Lectures on the Riemann Zeta Function. American Mathematical Society, 2014. http://dx.doi.org/10.1090/ulect/062/23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lapidus, Michel L., and Machiel van Frankenhuijsen. "Critical Zeros of Zeta Functions." In Springer Monographs in Mathematics. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2176-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cobler, Tim, and Michel L. Lapidus. "Towards a Fractal Cohomology: Spectra of Polya–Hilbert Operators, Regularized Determinants and Riemann Zeros." In Exploring the Riemann Zeta Function. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59969-4_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Voros, André. "Riemann Zeros and Factorizations of the Zeta Function." In Lecture Notes of the Unione Matematica Italiana. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05203-3_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Zeros of zeta function"

1

Xu, Hao. "Sigmoid function model of Zeta converter considering sneak circuits." In Second International Conference on Power Electronics and Artificial Intelligence (PEAI 2025), edited by Qiang Yang, Parikshit N. Mahalle, and Xuehe Wang. SPIE, 2025. https://doi.org/10.1117/12.3066774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Calingasan, Recto Rex M., and Alexander Vincent B. Policarpio. "On the zeros of the OEIS A191257 zeta function." In PROCEEDINGS OF THE 13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Collins, Nick. "Sonification of the Riemann Zeta Function." In ICAD 2019: The 25th International Conference on Auditory Display. Department of Computer and Information Sciences, Northumbria University, 2019. http://dx.doi.org/10.21785/icad2019.003.

Pełny tekst źródła
Streszczenie:
The Riemann zeta function is one of the great wonders of mathematics, with a deep and still not fully solved connection to the prime numbers. It is defined via an infinite sum analogous to Fourier additive synthesis, and can be calculated in various ways. It was Riemann who extended the consideration of the series to complex number arguments, and the famous Riemann hypothesis states that the non-trivial zeroes of the function all occur on the critical line 0:5 + ti, and what is more, hold a deep correspondence with the prime numbers. For the purposes of sonification, the rich set of mathematic
Style APA, Harvard, Vancouver, ISO itp.
4

Gopani, Paras Himmat, Navpreet Singh, Hemanta Kumar Sarma, Digambar S. Negi, and Padmaja S. Mattey. "A Zeta Potentiometric Study on Effects of Ionic Composition and Rock-Saturation on Surface-Charge Interactions in Low-Salinity Water Flooding for Carbonate Formation." In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200804-ms.

Pełny tekst źródła
Streszczenie:
Abstract As carbonate reservoirs are mostly oil-wet, the potential for the success of a waterflooding is lower. Therefore, a primary focus during waterflooding such reservoirs is on the ionic composition and salinity of injected brine which are able to impact the alteration of the rock wettability favorably by altering the surface charge towards a higher negative value or close to zero. The objective of this study is to employ zeta potentiometric studies comprising streaming potential and streaming current techniques to quantify the surface interactions and charges between the carbonate rock a
Style APA, Harvard, Vancouver, ISO itp.
5

Costa, G. A. T. F. Da. "Zeta function of a graph revisited." In CMAC Sul – Congresso de Matemática Aplicada e Computacional. SBMAC, 2014. http://dx.doi.org/10.5540/03.2014.002.01.0050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Xavier, G. Britto Antony, T. Sathinathan, and D. Arun. "Fractional order Riemann zeta factorial function." In SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5097535.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ozden, Hacer, Ismail Naci Cangul, Yilmaz Simsek, George Maroulis, and Theodore E. Simos. "Hurwitz Type Multiple Genocchi Zeta Function." In COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING: Advances in Computational Science: Lectures presented at the International Conference on Computational Methods in Sciences and Engineering 2008 (ICCMSE 2008). AIP, 2009. http://dx.doi.org/10.1063/1.3225435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Peng Ren, Richard C. Wilson, and Edwin R. Hancock. "Pattern vectors from the Ihara zeta function." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mingshun, Yang. "On Integral Representations for the Zeta-Function." In 2009 Second International Conference on Intelligent Computation Technology and Automation. IEEE, 2009. http://dx.doi.org/10.1109/icicta.2009.853.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

DETOMI, ELOISA, and ANDREA LUCCHINI. "SOME GENERALIZATIONS OF THE PROBABILISTIC ZETA FUNCTION." In Proceedings of a Conference in Honor of Akbar Rhemtulla. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708670_0007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!