Artykuły w czasopismach na temat „ZIGZAG TYPE NANOTUBE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ZIGZAG TYPE NANOTUBE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Дадашян, Л. Х., Р. Р. Трофимов, Н. Н. Конобеева та М. Б. Белоненко. "Предельно короткие импульсы в оптически анизотропной среде, содержащей углеродные нанотрубки с металлической проводимостью". Оптика и спектроскопия 130, № 12 (2022): 1861. http://dx.doi.org/10.21883/os.2022.12.54092.49-22.
Pełny tekst źródłaDadashyan L.H., Trofimov R.R., Konobeeva N.N., and Belonenko M.B. "Extremely short pulses in an anisotropic optical medium containing carbon nanotubes with metal conduction." Optics and Spectroscopy 130, no. 12 (2022): 1587. http://dx.doi.org/10.21883/eos.2022.12.55246.49-22.
Pełny tekst źródłaMalysheva, Lyuba. "Effects of chirality in the electron transmission through step-like potential in zigzag, armchair, and (2m,m) carbon nanotubes." Low Temperature Physics 48, no. 11 (2022): 907–13. http://dx.doi.org/10.1063/10.0014581.
Pełny tekst źródłaTomilin O. B., Rodionova E. V., Rodin E.A., Poklonski N. A., Anikeyev I. I., and Ratkevich S. V. "Dependence of the energy of emission molecular orbitals in short open carbon nanotubes on the electric field." Physics of the Solid State 64, no. 3 (2022): 347. http://dx.doi.org/10.21883/pss.2022.03.53191.201.
Pełny tekst źródłaGhorbanpour Arani, A., M. Mosayyebi, F. Kolahdouzan, R. Kolahchi, and M. Jamali. "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, no. 13 (2016): 2464–78. http://dx.doi.org/10.1177/0954410016667150.
Pełny tekst źródłaOkuyama, Rin, Wataru Izumida, and Mikio Eto. "Topology in single-wall carbon nanotube of zigzag and armchair type." Journal of Physics: Conference Series 969 (March 2018): 012137. http://dx.doi.org/10.1088/1742-6596/969/1/012137.
Pełny tekst źródłaKusunoki, Michiko, Toshiyuki Suzuki, and Chizuru Honjo. "Selective Growth of Zigzag-type Carbon Nanotube by Surface Decomposition of SiC." Materia Japan 42, no. 12 (2003): 900. http://dx.doi.org/10.2320/materia.42.900.
Pełny tekst źródłaZhou, Xin, Haifang Cai, Chunwei Hu, Jiao Shi, Zongli Li, and Kun Cai. "Analogous Diamondene Nanotube Structure Prediction Based on Molecular Dynamics and First-Principle Calculations." Nanomaterials 10, no. 5 (2020): 846. http://dx.doi.org/10.3390/nano10050846.
Pełny tekst źródłaZhao, Yipeng, Huamin Hu, and Gang Ouyang. "Optimizing the photovoltaic effect in one-dimensional single-wall carbon nanotube @ MoS2 van der Waals heteronanotubes." Journal of Applied Physics 132, no. 23 (2022): 234304. http://dx.doi.org/10.1063/5.0124128.
Pełny tekst źródłaSekiguchi, Ryuta, Kei Takahashi, Jun Kawakami, et al. "Preparation of a Cyclic Polyphenylene Array for a Zigzag-Type Carbon Nanotube Segment." Journal of Organic Chemistry 80, no. 10 (2015): 5092–110. http://dx.doi.org/10.1021/acs.joc.5b00485.
Pełny tekst źródłaGlukhova O. E., Slepchenkov M. M., and Kolesnichenko P. A. "Tunneling current between structural elements of thin graphene/nanotube films." Physics of the Solid State 64, no. 14 (2022): 2450. http://dx.doi.org/10.21883/pss.2022.14.54349.180.
Pełny tekst źródłaSlepchenkov, Michael M., Pavel V. Barkov, and Olga E. Glukhova. "Electronic and Electrical Properties of Island-Type Hybrid Structures Based on Bi-Layer Graphene and Chiral Nanotubes: Predictive Analysis by Quantum Simulation Methods." Coatings 13, no. 5 (2023): 966. http://dx.doi.org/10.3390/coatings13050966.
Pełny tekst źródłaNiikuni, Hiroaki. "Spectra of Periodic Schrödinger Operators on the Degenerate Zigzag Nanotube with δ Type Vertex Conditions". Integral Equations and Operator Theory 79, № 4 (2014): 477–505. http://dx.doi.org/10.1007/s00020-014-2162-9.
Pełny tekst źródłaYengejeh, Sadegh Imani, Andreas Öchsner, Seyedeh Alieh Kazemi, and Maksym Rybachuk. "Numerical Analysis of the Structural Stability of Ideal (Defect-Free) and Structurally and Morphologically Degenerated Homogeneous, Linearly- and Angle-Adjoined Nanotubes and Cylindrical Fullerenes Under Axial Loading Using Finite Element Method." International Journal of Applied Mechanics 10, no. 09 (2018): 1850100. http://dx.doi.org/10.1142/s1758825118501004.
Pełny tekst źródłaKhavryuchenko, Oleksiy V., Gilles H. Peslherbe, and Frank Hagelberg. "Spin Filter Circuit Design Based on a Finite Single-Walled Carbon Nanotube of the Zigzag Type." Journal of Physical Chemistry C 119, no. 7 (2015): 3740–45. http://dx.doi.org/10.1021/jp5095799.
Pełny tekst źródłaГлухова, О. Е., М. М. Слепченков та П. А. Колесниченко. "Туннельный ток между структурными элементами тонких графен/нанотрубных пленок". Физика твердого тела 63, № 12 (2021): 2198. http://dx.doi.org/10.21883/ftt.2021.12.51684.180.
Pełny tekst źródłaMohammadi, Mohsen Doust, and Hewa Y. Abdullah. "DFT Study for Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC2NNT (5,5), and BC2NNT (7,0)." Journal of Computational Biophysics and Chemistry 20, no. 08 (2021): 765–83. http://dx.doi.org/10.1142/s2737416521500472.
Pełny tekst źródłaElmahdy, Atef, Hayam Taha, Mohamed Kamel, and Menna Tarek. "Mechanical bending effects on hydrogen storage of Ni decorated (8, 0) boron nitride nanotube : DFT study." JOURNAL OF ADVANCES IN PHYSICS 16, no. 1 (2019): 299–325. http://dx.doi.org/10.24297/jap.v16i1.8389.
Pełny tekst źródłaWu, Jianbao, Liyuan Jiang, Xiaoyi Li, and Zhixiang Yin. "C2O Nanotubes with Negative Strain Energies and Improvements of Thermoelectric Properties via N-Doping Predicted from First-Principle Calculations." Crystals 13, no. 7 (2023): 1097. http://dx.doi.org/10.3390/cryst13071097.
Pełny tekst źródłaSergeeva, E. S. "Dependence of the Elastic Properties of a Single-Walled Carbon Nanotube on its Chirality." Solid State Phenomena 284 (October 2018): 20–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.20.
Pełny tekst źródłaTSUJI, NAOTO, SHIGEHIRO TAKAJO, and HIDEO AOKI. "LARGE MAGNETIC MOMENTS GENERATED FROM LOOP CURRENTS IN CARBON NANOTUBE ATTACHED TO ELECTRODES — A THEORETICAL PICTURE." International Journal of Modern Physics B 21, no. 08n09 (2007): 1198–206. http://dx.doi.org/10.1142/s021797920704263x.
Pełny tekst źródłaPalacios, Jorge A., and Rajamohan Ganesan. "Dynamic response of single-walled carbon nanotubes based on various shell theories." Journal of Reinforced Plastics and Composites 38, no. 9 (2019): 413–25. http://dx.doi.org/10.1177/0731684418824997.
Pełny tekst źródłaBobenko, Nadezhda, Valeriy Egorushkin, and Alexander Ponomarev. "Hysteresis in Heat Capacity of MWCNTs Caused by Interface Behavior." Nanomaterials 12, no. 18 (2022): 3139. http://dx.doi.org/10.3390/nano12183139.
Pełny tekst źródłaMAJZOOBI, G. H., J. PAYANDEHPEYMAN, and Z. BOLBOLI NOJINI. "AN INVESTIGATION INTO THE TORSIONAL BUCKLING OF CARBON NANOTUBES USING MOLECULAR AND STRUCTURAL MECHANICS." International Journal of Nanoscience 10, no. 04n05 (2011): 989–93. http://dx.doi.org/10.1142/s0219581x11008666.
Pełny tekst źródłaBoroznin, Sergey, Irina Zaporotskova, Natalia Boroznina, Daria Zvonareva, Pavel Zaporotskov, and Evgeniya An. "Study of Oxygen Interaction with Surface of Boron-Containing Nanotubes." NBI Technologies, no. 4 (December 2021): 25–33. http://dx.doi.org/10.15688/nbit.jvolsu.2021.4.4.
Pełny tekst źródłaFülep, Dávid, Ibolya Zsoldos, and István László. "Position Sensitivity Study in Molecular Dynamics Simulations of Self-Organized Development of 3D Nanostructures." Materials Science Forum 885 (February 2017): 216–21. http://dx.doi.org/10.4028/www.scientific.net/msf.885.216.
Pełny tekst źródłaCosta Paura, Edson Nunes, Wiliam F. da Cunha, Luiz Fernando Roncaratti, João B. L. Martins, Geraldo M. e Silva, and Ricardo Gargano. "CO2 adsorption on single-walled boron nitride nanotubes containing vacancy defects." RSC Advances 5, no. 35 (2015): 27412–20. http://dx.doi.org/10.1039/c4ra17336h.
Pełny tekst źródłaFan, Cheng Wen, Jhih Hua Huang, Chyan Bin Hwu, and Yu Yang Liu. "Mechanical Properties of Single-Walled Carbon Nanotubes - A Finite Element Approach." Advanced Materials Research 33-37 (March 2008): 937–42. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.937.
Pełny tekst źródłaUmeno, Yoshitaka, Atsushi Kubo, Chutian Wang, and Hiroyuki Shima. "Diameter-Change-Induced Transition in Buckling Modes of Defective Zigzag Carbon Nanotubes." Nanomaterials 12, no. 15 (2022): 2617. http://dx.doi.org/10.3390/nano12152617.
Pełny tekst źródłaChen, Xuan-Wen, Ke-Shan Chu, Rong-Jing Wei, Zhen-Lin Qiu, Chun Tang, and Yuan-Zhi Tan. "Phenylene segments of zigzag carbon nanotubes synthesized by metal-mediated dimerization." Chemical Science 13, no. 6 (2022): 1636–40. http://dx.doi.org/10.1039/d1sc05459g.
Pełny tekst źródłaHerrera-Carbajal, Alejandro, Ventura Rodríguez-Lugo, Juan Hernández-Ávila, and Ariadna Sánchez-Castillo. "A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon–germanium nanotubes." Physical Chemistry Chemical Physics 23, no. 23 (2021): 13075–86. http://dx.doi.org/10.1039/d1cp00519g.
Pełny tekst źródłaBarilka, A. G., and R. M. Balabai. "The Flow Behavior of Organic Liquids Inside Carbon Nanotubes." Фізика і хімія твердого тіла 17, no. 3 (2016): 329–35. http://dx.doi.org/10.15330/pcss.17.3.329-335.
Pełny tekst źródłaDu, Jiguang, Xiyuan Sun, and Gang Jiang. "Adsorption of the Ir4 cluster on single-wall carbon nanotubes: the zigzag types are more suitable." RSC Advances 5, no. 74 (2015): 60286–93. http://dx.doi.org/10.1039/c5ra09523a.
Pełny tekst źródłaSaenko, Nikita S., and Albert M. Ziatdinov. "Multi-Walled Carbon Nanotubes Synthesized by Methane Pyrolysis: Structure and Magnetic Properties." Solid State Phenomena 213 (March 2014): 60–64. http://dx.doi.org/10.4028/www.scientific.net/ssp.213.60.
Pełny tekst źródłaTerauchi, M., M. Tanaka, K. Suzuki, A. Ogino, and K. Kimura. "Production of zigzag-type BN nanotubes and BN cones by thermal annealing." Chemical Physics Letters 324, no. 5-6 (2000): 359–64. http://dx.doi.org/10.1016/s0009-2614(00)00637-0.
Pełny tekst źródłaÖzsoy, O., and N. Sünel. "On the electronic band structure of zigzag-type single-walled carbon nanotubes." Czechoslovak Journal of Physics 54, no. 12 (2004): 1495–501. http://dx.doi.org/10.1007/s10582-004-1206-9.
Pełny tekst źródłaMoaied, Mohammed, and Jisang Hong. "Size-Dependent Critical Temperature and Anomalous Optical Dispersion in Ferromagnetic CrI3 Nanotubes." Nanomaterials 9, no. 2 (2019): 153. http://dx.doi.org/10.3390/nano9020153.
Pełny tekst źródłaShailesh, Sarvesh Kumar, B. Tiwari, and K. Yadav. "Green Synthesis, Texture, Electron Diffraction, Thermal and Optical Properties of Cobalt Doped Arginine Carbon Nanotubes." Asian Journal of Chemistry 33, no. 5 (2021): 1120–24. http://dx.doi.org/10.14233/ajchem.2021.22684.
Pełny tekst źródłaZeighampour, Hamid, Yaghoub Tadi Beni, and Yaser Kiani. "Electric Field Effects on Buckling Analysis of Boron–Nitride Nanotubes Using Surface Elasticity Theory." International Journal of Structural Stability and Dynamics 20, no. 12 (2020): 2050137. http://dx.doi.org/10.1142/s0219455420501370.
Pełny tekst źródłaGhavamian, Ali, and Andreas Öchsner. "Numerical Modeling of the Eigenmodes and Eigenfrequencies of Carbon Nanotubes under the Influence of Defects." Journal of Nano Research 21 (December 2012): 159–64. http://dx.doi.org/10.4028/www.scientific.net/jnanor.21.159.
Pełny tekst źródłaWu, Jianhua, and Frank Hagelberg. "Interaction between Atomic Lanthanide Impurities and Ultrashort Carbon Nanotubes of the Zigzag Type." Journal of Physical Chemistry C 115, no. 11 (2011): 4571–77. http://dx.doi.org/10.1021/jp111927r.
Pełny tekst źródłaSudorgin, S. A., and N. G. Lebedev. "Differential Thermal EMF of Carbon Zigzag-Type Nanotubes in an External Electric Field." Physics of the Solid State 62, no. 10 (2020): 1928–32. http://dx.doi.org/10.1134/s1063783420100327.
Pełny tekst źródłaKusunoki, M., T. Suzuki, C. Honjo, T. Hirayama, and N. Shibata. "Selective synthesis of zigzag-type aligned carbon nanotubes on SiC (000−1) wafers." Chemical Physics Letters 366, no. 5-6 (2002): 458–62. http://dx.doi.org/10.1016/s0009-2614(02)01463-x.
Pełny tekst źródłaLei, Xiaowen, Toshiaki Natsuki, Jinxing Shi, and Qing-Qing Ni. "Analysis of Carbon Nanotubes on the Mechanical Properties at Atomic Scale." Journal of Nanomaterials 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/805313.
Pełny tekst źródłaGarcía-Toral, Dolores, Raúl Mendoza-Báez, Ernesto Chigo-Anota, et al. "Structural Stability and Electronic Properties of Boron Phosphide Nanotubes: A Density Functional Theory Perspective." Symmetry 14, no. 5 (2022): 964. http://dx.doi.org/10.3390/sym14050964.
Pełny tekst źródłaUmeno, Yoshitaka, Takayuki Kitamura, and Akihiro Kushima. "Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation." Computational Materials Science 30, no. 3-4 (2004): 283–87. http://dx.doi.org/10.1016/j.commatsci.2004.02.018.
Pełny tekst źródłaThamira, Amin D. Thamira, Ali S. Hasan Hasan, Raheem G. Kadhim Kadhim, Watheq G. Bakheet Bakheet, and Hamid I. Abbood Abbood. "Carbon Nanotubes Sensors for Gases Detection in Oil Industry." Journal of Petroleum Research and Studies 8, no. 3 (2021): 25–40. http://dx.doi.org/10.52716/jprs.v8i3.228.
Pełny tekst źródłaWu, Ai Qing, Qing Gong Song, and Li Yang. "First-Principles Study on Al or/and P Doped SiC Nanotubes." Advanced Materials Research 510 (April 2012): 747–52. http://dx.doi.org/10.4028/www.scientific.net/amr.510.747.
Pełny tekst źródłaXiang, Yi, and Go Yamamoto. "A Data Mining Approach to Investigate the Carbon Nanotubes Mechanical Properties via High-Throughput Molecular Simulation." Materials Science Forum 1023 (March 2021): 29–36. http://dx.doi.org/10.4028/www.scientific.net/msf.1023.29.
Pełny tekst źródłaSalmankhani, Azam, Zohre Karami, Amin Hamed Mashhadzadeh, Mohammad Reza Saeb, Vanessa Fierro, and Alain Celzard. "Mechanical Properties of C3N Nanotubes from Molecular Dynamics Simulation Studies." Nanomaterials 10, no. 5 (2020): 894. http://dx.doi.org/10.3390/nano10050894.
Pełny tekst źródła