Artykuły w czasopismach na temat „ZnO NRs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „ZnO NRs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zayed, Mohamed, Nourhan Nasser, Mohamed Shaban, Hind Alshaikh, Hany Hamdy, and Ashour M. Ahmed. "Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting." Nanomaterials 11, no. 9 (2021): 2338. http://dx.doi.org/10.3390/nano11092338.
Pełny tekst źródłaA Karim, Siti Shafura, Yuzuru Takamura, Phan Trong Tue, et al. "Developing Conductive Highly Ordered Zinc Oxide Nanorods by Acetylacetonate-Assisted Growth." Materials 13, no. 5 (2020): 1136. http://dx.doi.org/10.3390/ma13051136.
Pełny tekst źródłaLiu, Jun, Meng Jie Chang, Menken Tenggeer, and Hui Ling Du. "Fabrication of Highly Hydrophobic Polyurethane Foam for the Oil-Absorption Application." Materials Science Forum 809-810 (December 2014): 169–74. http://dx.doi.org/10.4028/www.scientific.net/msf.809-810.169.
Pełny tekst źródłaKalasung, Sukon, Saksorn Limwichean, Pitak Eiamchai, Mati Horprathum, Noppadon Nuntawong, and Artitaya Yatsomboon. "The preparation of Au decorated on ZnO nanorods by comparative DCMS/HIPIMS techniques for antibacterial activity." Journal of Associated Medical Sciences 58, no. 3 (2025): 173–83. https://doi.org/10.12982/jams.2025.086.
Pełny tekst źródłaSornsanit, Kanya, Mati Horprathum, Pitak Eiamchai, Chanunthorn Chananonnawathorn, Sukon Kalasung, and Jakrapong Kaewkhao. "Enhanced Antibacterial Activity by Au Nanoparticle Decorated ZnO Nanorods." Key Engineering Materials 675-676 (January 2016): 113–16. http://dx.doi.org/10.4028/www.scientific.net/kem.675-676.113.
Pełny tekst źródłaDilonardo, E., M. Alvisi, G. Cassano, and M. Penza. "Enhanced gas sensing properties of chemiresistors based on ZnO nanorods electrodecorated with Au and Pd nanoparticles." MRS Advances 2, no. 18 (2017): 1001–7. http://dx.doi.org/10.1557/adv.2017.13.
Pełny tekst źródłaJi, Zhiyuan. "Zno Nanorod From Structure, Properties to Applications." Highlights in Science, Engineering and Technology 69 (November 6, 2023): 657–62. http://dx.doi.org/10.54097/hset.v69i.13780.
Pełny tekst źródłaHossain, Mohammad Kamal, Qasem Ahmed Drmosh, and Md Arifuzzaman. "Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering." Physical Chemistry Chemical Physics 24, no. 15 (2022): 8787–99. http://dx.doi.org/10.1039/d1cp05681f.
Pełny tekst źródłaBalu, Sridharan, Harikrishnan Venkatesvaran, Kuo-Wei Lan, and Thomas C.-K. Yang. "Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline." Catalysts 12, no. 12 (2022): 1601. http://dx.doi.org/10.3390/catal12121601.
Pełny tekst źródłaAventaggiato, Michele, Adele Preziosi, Hossein Cheraghi Bidsorkhi, et al. "ZnO Nanorods Create a Hypoxic State with Induction of HIF-1 and EPAS1, Autophagy, and Mitophagy in Cancer and Non-Cancer Cells." International Journal of Molecular Sciences 24, no. 8 (2023): 6971. http://dx.doi.org/10.3390/ijms24086971.
Pełny tekst źródłaDilonardo, Elena, Michele Penza, Marco Alvisi, et al. "Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors." Beilstein Journal of Nanotechnology 8 (January 10, 2017): 82–90. http://dx.doi.org/10.3762/bjnano.8.9.
Pełny tekst źródłaKumar, Utkarsh, Shih-Ming Huang, Zu-Yin Deng, Cheng-Xin Yang, Wen-Min Haung, and Chiu-Hsien Wu. "Comparative DFT dual gas adsorption model of ZnO and Ag/ZnO with experimental applications as gas detection at ppb level." Nanotechnology 33, no. 10 (2021): 105502. http://dx.doi.org/10.1088/1361-6528/ac3e2f.
Pełny tekst źródłaAmeer, Ali A., Abu Bakar Suriani, Akram R. Jabur, and Marwan S. Abbas. "Enhancement of Photocatalytic Performances by Sand/Zinc Oxide." Key Engineering Materials 900 (September 20, 2021): 188–96. http://dx.doi.org/10.4028/www.scientific.net/kem.900.188.
Pełny tekst źródłaFalfushynska, Halina I., Fangli Wu, Fei Ye, et al. "The effects of ZnO nanostructures of different morphology on bioenergetics and stress response biomarkers of the blue mussels Mytilus edulis." Science of The Total Environment 694, no. 1 December 2019 (2019): 133717. https://doi.org/10.5281/zenodo.4976044.
Pełny tekst źródłaEm, Svetlana, Mussa Yedigenov, Laura Khamkhash, et al. "Uncovering the Role of Surface-Attached Ag Nanoparticles in Photodegradation Improvement of Rhodamine B by ZnO-Ag Nanorods." Nanomaterials 12, no. 16 (2022): 2882. http://dx.doi.org/10.3390/nano12162882.
Pełny tekst źródłaKurudirek, Sinem V. "Double Layer Growth of ZnO Nanorods by a Low Temperature Solution Method: Synthesis and Photoluminescence Properties." Journal of Nano Research 71 (January 25, 2022): 45–56. http://dx.doi.org/10.4028/www.scientific.net/jnanor.71.45.
Pełny tekst źródłaSánchez, Luis A., Brian E. Huayta, Pierre G. Ramos, and Juan M. Rodriguez. "Enhanced Photocatalytic Activity of ZnO Nanorods/(Graphene Oxide, Reduced Graphene Oxide) for Degradation of Methyl Orange Dye." Journal of Physics: Conference Series 2172, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1742-6596/2172/1/012013.
Pełny tekst źródłaGopi, Chandu V. V. M., Mallineni Venkata-Haritha, Young-Seok Lee, and Hee-Je Kim. "ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells." Journal of Materials Chemistry A 4, no. 21 (2016): 8161–71. http://dx.doi.org/10.1039/c6ta02415g.
Pełny tekst źródłaRATTANAWARINCHAI, PRAPAKORN, NARATHON KHEMASIRI, SUKITTAYA JESSADALUK, et al. "GROWTH TIME DEPENDENCE ON PHOTOELECTROCHEMICAL PROPERTY OF ZINC OXIDE NANORODS PREPARED BY HYDROTHERMAL SYNTHESIS." Surface Review and Letters 25, Supp01 (2018): 1840001. http://dx.doi.org/10.1142/s0218625x18400012.
Pełny tekst źródłaShang, Shiguang, Yunpeng Dong, Wenqian Zhang, and Wei Ren. "Fabrication and Performance of UV Photodetector of ZnO Nanorods Decorated with Al Nanoparticles." Nanomaterials 12, no. 21 (2022): 3768. http://dx.doi.org/10.3390/nano12213768.
Pełny tekst źródłaQomaruddin, Olga Casals, Hutomo Suryo Wasisto, Andreas Waag, Joan Daniel Prades, and Cristian Fàbrega. "Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs)." Chemosensors 10, no. 1 (2022): 28. http://dx.doi.org/10.3390/chemosensors10010028.
Pełny tekst źródłaBadif Nurwidi, Muhammad, Sayekti Wahyuningsih, and Ari Handono Ramelan. "Synthesis of rGO/ZnO Nanorods Composite and its Application as a Photoanode in DSSC Solar Cells." Defect and Diffusion Forum 438 (February 10, 2025): 53–67. https://doi.org/10.4028/p-ccr0xh.
Pełny tekst źródłaLa Phan, Phuong Ha, Quang Trung Tran, Duc Anh Dinh, Ko Kang Bok, Chang-Hee Hong, and Tran Viet Cuong. "The Facile Synthesis of Novel ZnO Nanostructure for Galactose Biosensor Application." Journal of Nanomaterials 2019 (February 25, 2019): 1–8. http://dx.doi.org/10.1155/2019/2364327.
Pełny tekst źródłaGüler, Ali Can, Jan Antoš, Milan Masař, Michal Urbánek, Michal Machovský, and Ivo Kuřitka. "Boosting the Photoelectrochemical Performance of Au/ZnO Nanorods by Co-Occurring Gradient Doping and Surface Plasmon Modification." International Journal of Molecular Sciences 24, no. 1 (2022): 443. http://dx.doi.org/10.3390/ijms24010443.
Pełny tekst źródłaAlam, Md Shah, Bodrun Nahar, Md Abdul Gafur, Gimyeong Seong, and Muhammad Zamir Hossain. "Forced Convective Heat Transfer Coefficient Measurement of Low Concentration Nanorods ZnO–Ethylene Glycol Nanofluids in Laminar Flow." Nanomaterials 12, no. 9 (2022): 1568. http://dx.doi.org/10.3390/nano12091568.
Pełny tekst źródłaShah, Deb Kumar, Devendra KC, M. Shaheer Akhtar, Chong Yeal Kim, and O.-Bong Yang. "Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties." Applied Sciences 10, no. 17 (2020): 6062. http://dx.doi.org/10.3390/app10176062.
Pełny tekst źródłaHamzah, Nur Atiqah, Swee Yong Pung, Srimala Sreekantan, and Siti Nor Qurratu Aini Abd Aziz. "Effect of CVD Synthesis Parameters on the Growth of Catalyst-Free ZnO NRs." Materials Science Forum 756 (May 2013): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.756.24.
Pełny tekst źródłaQurratu Aini Abd Aziz, Siti Nor, Swee Yong Pung, Zainovia Lockman, Nur Atiqah Hamzah, and Yim Leng Chan. "Ex Situ Doping of ZnO Nanorods by Spray Pyrolysis Technique." Materials Science Forum 756 (May 2013): 16–23. http://dx.doi.org/10.4028/www.scientific.net/msf.756.16.
Pełny tekst źródłaAbdulrahman, Ahmed Fattah, Sabah Mohammed Ahmed, Naser Mahmoud Ahmed, and Munirah Abullah Almessiere. "Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration." Crystals 10, no. 5 (2020): 386. http://dx.doi.org/10.3390/cryst10050386.
Pełny tekst źródłaKim, Dongwan, and Jae-Young Leem. "Improved Ultraviolet Photoresponse Properties of ZnO Nanorods Grown by Using Hydrothermal Method Applied Rotating Precursor Solution." Korean Journal of Metals and Materials 59, no. 3 (2021): 187–94. http://dx.doi.org/10.3365/kjmm.2021.59.3.187.
Pełny tekst źródłaRaub, Aini Ayunni Mohd, Jaenudin Ridwan, Jamal Kazmi, et al. "Characterization of ZnO/rGO Nanocomposite and Its Application for Photocatalytic Degradation." Journal of Nanoelectronics and Optoelectronics 18, no. 10 (2023): 1147–55. http://dx.doi.org/10.1166/jno.2023.3487.
Pełny tekst źródłaChang, Chung-Cheng, and Chia-Hong Huang. "ZnO Nanorods as Antireflection Layers in Metal-Insulator-Semiconductor Solar Cells." Electronics 11, no. 13 (2022): 2068. http://dx.doi.org/10.3390/electronics11132068.
Pełny tekst źródłaFarhat, Omar F., Muhammad Husham, Azeez A. Barzinjy, et al. "MORPHOLOGICAL AND OPTICAL PROPERTIES OF ZNO NANORODS GROWN ONTO SILICON SUBSTRATES: THE IMPACT OF GROWTH TEMPERATURE." Science Journal of University of Zakho 12, no. 4 (2024): 450–55. http://dx.doi.org/10.25271/sjuoz.2024.12.4.1346.
Pełny tekst źródłaPokai, Supawadee, Puenisara Limnonthakul, Mati Horprathum, et al. "Influence of Growth Conditions on Morphology of ZnO Nanorods by Low-Temperature Hydrothermal Method." Key Engineering Materials 675-676 (January 2016): 53–56. http://dx.doi.org/10.4028/www.scientific.net/kem.675-676.53.
Pełny tekst źródłaAbd Aziz, Siti Nor Qurratu Aini, Swee Yong Pung, Zainovia Lockman, and Nur Atiqah Hamzah. "Structural and Optical Properties of Fe-Doped ZnO Nanorods." Advanced Materials Research 858 (November 2013): 151–58. http://dx.doi.org/10.4028/www.scientific.net/amr.858.151.
Pełny tekst źródłaAli, Abdullah Taha, W. Maryam, Yu-Wei Huang, et al. "Random laser behavior in Gold-doped Zinc Oxide nanorods structures." Journal of Physics: Conference Series 2075, no. 1 (2021): 012015. http://dx.doi.org/10.1088/1742-6596/2075/1/012015.
Pełny tekst źródłaChou, Chia-Man, Le Tran Thanh Thi, Nguyen Thi Quynh Nhu, et al. "Zinc Oxide Nanorod Surface-Enhanced Raman Scattering Substrates without and with Gold Nanoparticles Fabricated through Pulsed-Laser-Induced Photolysis." Applied Sciences 10, no. 14 (2020): 5015. http://dx.doi.org/10.3390/app10145015.
Pełny tekst źródłaLoiko, Pavel, Tanujjal Bora, Josep Maria Serres, et al. "Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared." Beilstein Journal of Nanotechnology 9 (October 23, 2018): 2730–40. http://dx.doi.org/10.3762/bjnano.9.255.
Pełny tekst źródłaYoo, Junhyuk, Uijin Jung, Bomseumin Jung, Wenhu Shen, and Jinsub Park. "Improved Photoresponse Characteristics of a ZnO-Based UV Photodetector by the Formation of an Amorphous SnO2 Shell Layer." Sensors 21, no. 18 (2021): 6124. http://dx.doi.org/10.3390/s21186124.
Pełny tekst źródłaHanh. "ZnO NANORODS GROWN ON PLASTIC PVC SUBSTRATE FOR ENVIRONMENTAL APPLICATION." Journal of Military Science and Technology, no. 67 (June 12, 2020): 149–53. http://dx.doi.org/10.54939/1859-1043.j.mst.67.2020.149-153.
Pełny tekst źródłaJaqsi, Mohammed Kadhim, Awaz Kareem, and Ahmed Abdulrahman. "Investigating the Impact of Growth Temperatures on the ZnO Nanorods Properties Grown with Simplest Spray Technique." Science Journal of University of Zakho 11, no. 1 (2023): 110–16. http://dx.doi.org/10.25271/sjuoz.2023.11.1.1072.
Pełny tekst źródłaSon, Soomin, Pil-Hoon Jung, Jaemin Park, et al. "Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance." Nanoscale 10, no. 46 (2018): 21696–702. http://dx.doi.org/10.1039/c8nr06788k.
Pełny tekst źródłaAbdulameer, Z. Th, A. J. Alrubaie, H. A. Alshamarti, et al. "Optical properties of ZnO nanorods and ZnO/CdZnS thin films." Chalcogenide Letters 19, no. 7 (2022): 457–62. http://dx.doi.org/10.15251/cl.2022.197.457.
Pełny tekst źródłaZhang, BingKe, Qi Li, Dongbo Wang, et al. "Efficient Photocatalytic Hydrogen Evolution over TiO2-X Mesoporous Spheres-ZnO Nanorods Heterojunction." Nanomaterials 10, no. 11 (2020): 2096. http://dx.doi.org/10.3390/nano10112096.
Pełny tekst źródłaFAISAL, ABDULQADER D., MOHAMMAD O. DAWOOD, HASSAN H. HUSSEIN, and KHALEEL I. HASSOON. "PERFORMANCE OF pH SENSOR ELECTRODE BASED ON ZnO NRs ON FTO-GLASS SUBSTRATE." Surface Review and Letters 27, no. 08 (2020): 1950198. http://dx.doi.org/10.1142/s0218625x19501981.
Pełny tekst źródłaDavydova, Marina, Alexandr Laposa, Jiri Smarhak, et al. "Gas-sensing behaviour of ZnO/diamond nanostructures." Beilstein Journal of Nanotechnology 9 (January 3, 2018): 22–29. http://dx.doi.org/10.3762/bjnano.9.4.
Pełny tekst źródłaLee, Dong Jin, Ganesan Mohan Kumar, Deuk Young Kim, and Pugazhendi Ilanchezhiyan. "Highly Semiconducting One-Dimensional Porous ZnO Nanorod Array Nanogenerators for Mechanical Energy Harvesting Functions." International Journal of Energy Research 2024 (April 25, 2024): 1–11. http://dx.doi.org/10.1155/2024/5546570.
Pełny tekst źródłaFaisal, Abdulqader D., Wafaa K. Khalef, Evan T. Salim, Forat Hamzah Alsultany, and M. H. A. Wahid. "Conductivity Modification of ZnO NRs Films via Gold Coating for Temperature Sensor Application." Key Engineering Materials 936 (December 14, 2022): 105–14. http://dx.doi.org/10.4028/p-25h5n1.
Pełny tekst źródłaTamashevski, Alexander, Yuliya Harmaza, Ekaterina Slobozhanina, Roman Viter, and Igor Iatsunskyi. "Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods." Molecules 25, no. 14 (2020): 3168. http://dx.doi.org/10.3390/molecules25143168.
Pełny tekst źródłaAlsukaibi, Abdulmohsen K. D., Mohd Wajid Ali Khan, Ahmed Al-Otaibi, et al. "Structural, Morphological, and Photoluminescence Studies of Eco-Friendly Synthesized Allium sativum Extract Based Zinc Oxide Nanorods Inhibit HSA Glycation." Journal of Nanoelectronics and Optoelectronics 19, no. 9 (2024): 934–42. http://dx.doi.org/10.1166/jno.2024.3659.
Pełny tekst źródła