Artigos de revistas sobre o tema "3D structuring"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "3D structuring".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Senn, T., Ch Waberski, J. Wolf, J. P. Esquivel, N. Sabaté e B. Löchel. "3D structuring of polymer parts using thermoforming processes". Microelectronic Engineering 88, n.º 1 (janeiro de 2011): 11–16. http://dx.doi.org/10.1016/j.mee.2010.08.003.
Texto completo da fontePurwidyantri, Agnes, Chih-Hsien Hsu, Chia-Ming Yang, Briliant Adhi Prabowo, Ya-Chung Tian e Chao-Sung Lai. "Plasmonic nanomaterial structuring for SERS enhancement". RSC Advances 9, n.º 9 (2019): 4982–92. http://dx.doi.org/10.1039/c8ra10656h.
Texto completo da fonteAleksandrov, M., A. Diakité, J. Yan, W. Li e S. Zlatanova. "SYSTEMS ARCHITECTURE FOR MANAGEMENT OF BIM, 3D GIS AND SENSORS DATA". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W9 (30 de setembro de 2019): 3–10. http://dx.doi.org/10.5194/isprs-annals-iv-4-w9-3-2019.
Texto completo da fonteQi, Jianbo, Tiangang Yin, Donghui Xie e Jean-Philippe Gastellu-Etchegorry. "Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations". Remote Sensing 11, n.º 22 (12 de novembro de 2019): 2637. http://dx.doi.org/10.3390/rs11222637.
Texto completo da fonteKim, Do-Yeon. "Liver vasculature refinement with multiple 3D structuring element shapes". Pattern Analysis and Applications 17, n.º 3 (24 de abril de 2013): 667–78. http://dx.doi.org/10.1007/s10044-013-0338-6.
Texto completo da fonteYan, Hengfeng, Jimin Chen e Jinyan Zhao. "3D-MID manufacturing via laser direct structuring with nanosecond laser pulses". Journal of Polymer Engineering 36, n.º 9 (1 de novembro de 2016): 957–62. http://dx.doi.org/10.1515/polyeng-2015-0367.
Texto completo da fonteJabłoński, Mirosław. "Silhouette Processing Via Mathematical Morphology with Pose-Aware Structuring Elements Based on 3D Model". Image Processing & Communications 17, n.º 4 (1 de dezembro de 2012): 71–78. http://dx.doi.org/10.2478/v10248-012-0031-1.
Texto completo da fonteJaksa, Laszlo, Dieter Pahr, Gernot Kronreif e Andrea Lorenz. "Development of a Multi-Material 3D Printer for Functional Anatomic Models". International Journal of Bioprinting 7, n.º 4 (12 de outubro de 2021): 420. http://dx.doi.org/10.18063/ijb.v7i4.420.
Texto completo da fonteIvanov, Alexey, e Ulrich Mescheder. "Silicon Electrochemical Etching for 3D Microforms with High Quality Surfaces". Advanced Materials Research 325 (agosto de 2011): 666–71. http://dx.doi.org/10.4028/www.scientific.net/amr.325.666.
Texto completo da fonteBéjot, Pierre, e Bertrand Kibler. "Quadrics for Structuring Invariant Space-Time Wave Packets". EPJ Web of Conferences 266 (2022): 13018. http://dx.doi.org/10.1051/epjconf/202226613018.
Texto completo da fonteBayles, Alexandra V., Tazio Pleij, Martin Hofmann, Fabian Hauf, Theo Tervoort e Jan Vermant. "Structuring Hydrogel Cross-Link Density Using Hierarchical Filament 3D Printing". ACS Applied Materials & Interfaces 14, n.º 13 (29 de março de 2022): 15667–77. http://dx.doi.org/10.1021/acsami.2c02069.
Texto completo da fonte张, 彬. "Two 3D Morphological Filtering Methods Based on Sphere Structuring Element". Journal of Image and Signal Processing 05, n.º 01 (2016): 33–42. http://dx.doi.org/10.12677/jisp.2016.51005.
Texto completo da fonteHagen, Gunter, Thomas Kopp, Steffen Ziesche, Uwe Partsch e Ester Ruprecht. "Combined 3D Micro Structuring of Ceramic Green Tape Using Punching, Embossing and Laser Processing". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (1 de setembro de 2012): 000341–47. http://dx.doi.org/10.4071/cicmt-2012-wa34.
Texto completo da fonteQin, Jie, Dongqing Yang, Shaheer Maher, Luis Lima-Marques, Yanmin Zhou, Yujie Chen, Gerald J. Atkins e Dusan Losic. "Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration". Journal of Materials Chemistry B 6, n.º 19 (2018): 3136–44. http://dx.doi.org/10.1039/c7tb03251j.
Texto completo da fonteLima, Frederico, Isman Khazi, Ulrich Mescheder, Alok C. Tungal e Uma Muthiah. "Fabrication of 3D microstructures using grayscale lithography". Advanced Optical Technologies 8, n.º 3-4 (26 de junho de 2019): 181–93. http://dx.doi.org/10.1515/aot-2019-0023.
Texto completo da fonteMETAYER, Pascal. "3D-CERAMIC INTERCONNECTION DEVICES". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, CICMT (1 de setembro de 2011): 000306–11. http://dx.doi.org/10.4071/cicmt-2011-tha25.
Texto completo da fonteLe Bars, Gaelle, e Ziad Hajar. "Requirement Management for the 3D Pavement Model Over the Lifecycle". International Journal of 3-D Information Modeling 6, n.º 3 (julho de 2017): 57–70. http://dx.doi.org/10.4018/ij3dim.2017070105.
Texto completo da fonteWu, Yan Jun, Yong Zhuo, Juan Peng, Xuan Wu e Xin Zhao. "Kinematic Analysis and Simulation of MID Laser Direct Structuring Equipment". Advanced Materials Research 590 (novembro de 2012): 236–41. http://dx.doi.org/10.4028/www.scientific.net/amr.590.236.
Texto completo da fonteHuan, Tran N., Reuben T. Jane, Anass Benayad, Laure Guetaz, Phong D. Tran e Vincent Artero. "Bio-inspired noble metal-free nanomaterials approaching platinum performances for H2 evolution and uptake". Energy & Environmental Science 9, n.º 3 (2016): 940–47. http://dx.doi.org/10.1039/c5ee02739j.
Texto completo da fonteHasselmann, Sebastian, Lukas Hahn, Thomas Lorson, Eva Schätzlein, Isabelle Sébastien, Matthias Beudert, Tessa Lühmann et al. "Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel". Materials Horizons 8, n.º 12 (2021): 3334–44. http://dx.doi.org/10.1039/d1mh00925g.
Texto completo da fonteCusola, Oriol, Orlando J. Rojas e M. Blanca Roncero. "Lignin Particles for Multifunctional Membranes, Antioxidative Microfiltration, Patterning, and 3D Structuring". ACS Applied Materials & Interfaces 11, n.º 48 (8 de novembro de 2019): 45226–36. http://dx.doi.org/10.1021/acsami.9b16931.
Texto completo da fontePlatzgummer, E., A. Biedermann, H. Langfischer, S. Eder-Kapl, M. Kuemmel, S. Cernusca, H. Loeschner et al. "Simulation of ion beam direct structuring for 3D nanoimprint template fabrication". Microelectronic Engineering 83, n.º 4-9 (abril de 2006): 936–39. http://dx.doi.org/10.1016/j.mee.2006.01.140.
Texto completo da fonteLeclercq, J. L., P. Rojo-Romeo, C. Seassal, J. Mouette, X. Letartre e P. Viktorovitch. "3D structuring of multilayer suspended membranes including 2D photonic crystal structures". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, n.º 6 (2003): 2903. http://dx.doi.org/10.1116/1.1627796.
Texto completo da fonteWang, Ningning, Shan Liu, Tianxiang Xu, Ruwei Zhao, Tiefeng Xu, Wieslaw Krolikowski e Yan Sheng. "Structuring light beams via nonlinear diffraction in 3D nonlinear photonic crystal". Optics & Laser Technology 168 (janeiro de 2024): 109994. http://dx.doi.org/10.1016/j.optlastec.2023.109994.
Texto completo da fonteStögerer, Johannes, Sonja Baumgartner, Alexander Hochwallner e Jürgen Stampfl. "Bio-Inspired Toughening of Composites in 3D-Printing". Materials 13, n.º 21 (22 de outubro de 2020): 4714. http://dx.doi.org/10.3390/ma13214714.
Texto completo da fonteZhuo, Yong, Yan Jun Wu e Juan Peng. "Design and Simulation of 3D Layout for MID Based on Open CASCADE". Advanced Materials Research 479-481 (fevereiro de 2012): 1978–81. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.1978.
Texto completo da fonteGe, Jin, Xu Wang, Hong-Bin Yao, Hong-Wu Zhu, Yu-Can Peng e Shu-Hong Yu. "Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight". Materials Horizons 2, n.º 5 (2015): 509–13. http://dx.doi.org/10.1039/c5mh00069f.
Texto completo da fontePark, Dongkyu, e Dongkyoung Lee. "Effect of Fluence and Multi-Pass on Groove Morphology and Process Efficiency of Laser Structuring for 3D Electrodes of Lithium-Ion Batteries". Materials 14, n.º 5 (8 de março de 2021): 1283. http://dx.doi.org/10.3390/ma14051283.
Texto completo da fontePfleging, Wilhelm. "A review of laser electrode processing for development and manufacturing of lithium-ion batteries". Nanophotonics 7, n.º 3 (23 de fevereiro de 2018): 549–73. http://dx.doi.org/10.1515/nanoph-2017-0044.
Texto completo da fonteAngelova, L., E. Filipov, D. M. Aceti, Al Zhelyazkova, I. Buchvarov e A. Daskalova. "Ultra-short laser structuring of 3D-microfabricated non-resorbable polystyrene polymer to anchor cellular adhesion". Journal of Physics: Conference Series 2487, n.º 1 (1 de maio de 2023): 012001. http://dx.doi.org/10.1088/1742-6596/2487/1/012001.
Texto completo da fonteKitiashvili, Irina N., Alan A. Wray, Viacheslav Sadykov, Alexander G. Kosovichev e Nagi N. Mansour. "Realistic 3D MHD modeling of self-organized magnetic structuring of the solar corona". Proceedings of the International Astronomical Union 15, S354 (junho de 2019): 346–50. http://dx.doi.org/10.1017/s1743921320001532.
Texto completo da fonteZhu, Jiping, Jiawei Yan, Jun Chen, Xin Guo e Shanguang Zhao. "Structuring Al3+-doped LiNi1∕3Co1∕3Mn1∕3O2 by 3D-birdnest-shaped MnO2". Functional Materials Letters 12, n.º 04 (agosto de 2019): 1950051. http://dx.doi.org/10.1142/s1793604719500516.
Texto completo da fonteMunnik, F., F. Benninger, S. Mikhailov, A. Bertsch, P. Renaud, H. Lorenz e M. Gmür. "High aspect ratio, 3D structuring of photoresist materials by ion beam LIGA". Microelectronic Engineering 67-68 (junho de 2003): 96–103. http://dx.doi.org/10.1016/s0167-9317(03)00064-9.
Texto completo da fonteBaldacci, Fabien, e Achille Braquelaire. "Oriented boundary graph: An efficient structuring model for segmentation of 3D images". Computer Vision and Image Understanding 143 (fevereiro de 2016): 92–103. http://dx.doi.org/10.1016/j.cviu.2015.10.003.
Texto completo da fonteLa Russa, F. M., E. Grilli, F. Remondino, C. Santagati e M. Intelisano. "ADVANCED 3D PARAMETRIC HISTORIC CITY BLOCK MODELING COMBINING 3D SURVEYING, AI AND VPL". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-2-2023 (24 de junho de 2023): 903–10. http://dx.doi.org/10.5194/isprs-archives-xlviii-m-2-2023-903-2023.
Texto completo da fonteGassmann, Stefan, Sathurja Jegatheeswaran, Till Schleifer, Hesam Arbabi e Helmut Schütte. "3D Printed PCB Microfluidics". Micromachines 13, n.º 3 (19 de março de 2022): 470. http://dx.doi.org/10.3390/mi13030470.
Texto completo da fonteXiong, Wen, Qiuying Xia e Hui Xia. "Three-dimensional self-supported metal oxides as cathodes for microbatteries". Functional Materials Letters 07, n.º 05 (26 de agosto de 2014): 1430003. http://dx.doi.org/10.1142/s1793604714300035.
Texto completo da fonteTran, Minh Xuan, Peter Smyrek, Jihun Park, Wilhelm Pfleging e Joong Kee Lee. "Ultrafast-Laser Micro-Structuring of LiNi0.8Mn0.1Co0.1O2 Cathode for High-Rate Capability of Three-Dimensional Li-ion Batteries". Nanomaterials 12, n.º 21 (4 de novembro de 2022): 3897. http://dx.doi.org/10.3390/nano12213897.
Texto completo da fonteDai, Y. T., Gang Xu e Wei Lai Li. "Laser Micromachining of Wide Bandgap Materials". Advanced Materials Research 69-70 (maio de 2009): 118–22. http://dx.doi.org/10.4028/www.scientific.net/amr.69-70.118.
Texto completo da fonteHedjazi, Lotfi, Sofiane Belhabib, Angélina D’Orlando e Sofiane Guessasma. "Breaking Material Symmetry to Control Mechanical Performance in 3D Printed Objects". Symmetry 15, n.º 1 (22 de dezembro de 2022): 28. http://dx.doi.org/10.3390/sym15010028.
Texto completo da fonteSafarov, Damir, Aleksey Kondrashov e Ayrat Fashudtinov. "ARRANGEMENT OF ENGINEERING MODELING OF TECHNOLOGICAL SYSTEMS FOR SOLVING PRODUCTION TASKS OF DIVERSE COMPLEXITY". Bulletin of Bryansk state technical university 2021, n.º 10 (14 de outubro de 2021): 4–12. http://dx.doi.org/10.30987/1999-8775-2021-10-4-12.
Texto completo da fonteSafarov, Damir, Aleksey Kondrashov e Ayrat Fashudtinov. "ARRANGEMENT OF ENGINEERING MODELING OF TECHNOLOGICAL SYSTEMS FOR SOLVING PRODUCTION TASKS OF DIVERSE COMPLEXITY". Bulletin of Bryansk state technical university 2021, n.º 10 (14 de outubro de 2021): 4–12. http://dx.doi.org/10.30987/1999-8775-2021-10-4-12.
Texto completo da fonteHuang, Qian, Wei Liu, Yongqiang Yang, Long Xiao, Zhengang Yang, Jinsong Liu e Kejia Wang. "Structuring a terahertz beam by using a 3D-printed n-faced pyramid lens". Optics Express 29, n.º 8 (2 de abril de 2021): 12124. http://dx.doi.org/10.1364/oe.421061.
Texto completo da fonteLightman, Shlomi, Moran Bin-Nun, Galit Bar, Gilad Hurvitz e Raz Gvishi. "Structuring light using solgel hybrid 3D-printed optics prepared by two-photon polymerization". Applied Optics 61, n.º 6 (15 de fevereiro de 2022): 1434. http://dx.doi.org/10.1364/ao.450931.
Texto completo da fonteSmolík, J., P. Knotek, J. Schwarz, E. Černošková, P. Janíček, K. Melánová, L. Zárybnická et al. "3D micro-structuring by CW direct laser writing on PbO-Bi2O3-Ga2O3 glass". Applied Surface Science 589 (julho de 2022): 152993. http://dx.doi.org/10.1016/j.apsusc.2022.152993.
Texto completo da fonteBoustani, Bahareh, Abdolrahim Javaherian, Majid Nabi-Bidhendi, Siyavash Torabi e Hamid Reza Amindavar. "Channel boundary detection using a 3D morphological filter and adaptive ellipsoidal structuring element". Exploration Geophysics 51, n.º 2 (25 de novembro de 2019): 232–47. http://dx.doi.org/10.1080/08123985.2019.1661216.
Texto completo da fonteDe Angelis, F., C. Liberale, M. L. Coluccio, G. Cojoc e E. Di Fabrizio. "Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies". Nanoscale 3, n.º 7 (2011): 2689. http://dx.doi.org/10.1039/c1nr10124b.
Texto completo da fonteBachy, Bassim, Robert Süß-Wolf, Timo Kordass e Joerg Franke. "Simulation and experimental investigation for the 2D and 3D laser direct structuring process". International Journal of Advanced Manufacturing Technology 89, n.º 5-8 (29 de julho de 2016): 1591–602. http://dx.doi.org/10.1007/s00170-016-9173-4.
Texto completo da fonteJang, Ki-Hwan, Hae-Sung Yoon, Hyun-Taek Lee, Eunseob Kim e Sung-Hoon Ahn. "50 nm Scale Alignment Method for Hybrid Manufacturing Processes for Full 3D Structuring". International Journal of Precision Engineering and Manufacturing 21, n.º 12 (26 de outubro de 2020): 2407–17. http://dx.doi.org/10.1007/s12541-020-00411-y.
Texto completo da fonteSchober, Andreas, Uta Fernekorn, Sukhdeep Singh, Gregor Schlingloff, Michael Gebinoga, Jörg Hampl e Adam Williamson. "Mimicking the biological world: Methods for the 3D structuring of artificial cellular environments". Engineering in Life Sciences 13, n.º 4 (julho de 2013): 352–67. http://dx.doi.org/10.1002/elsc.201200088.
Texto completo da fonte