Literatura científica selecionada sobre o tema "Air gap"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Air gap".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Air gap"
Houghtaling, Steven. "Air‐gap hydrophone". Journal of the Acoustical Society of America 94, n.º 4 (outubro de 1993): 2466–67. http://dx.doi.org/10.1121/1.407428.
Texto completo da fonteHeyn, Ch, M. Schmidt, S. Schwaiger, A. Stemmann, S. Mendach e W. Hansen. "Air-gap heterostructures". Applied Physics Letters 98, n.º 3 (17 de janeiro de 2011): 033105. http://dx.doi.org/10.1063/1.3544047.
Texto completo da fonteByres, Eric. "The air gap". Communications of the ACM 56, n.º 8 (agosto de 2013): 29–31. http://dx.doi.org/10.1145/2492007.2492018.
Texto completo da fonteKerut, Edmund Kenneth, Curtis Hannawalt, Charles T. Everson e Navin C. Nanda. "The Air Gap Sign". Echocardiography 31, n.º 3 (24 de janeiro de 2014): 400–401. http://dx.doi.org/10.1111/echo.12513.
Texto completo da fonteBenson, Byron W., Neil L. Frederiksen e Paul W. Goaz. "Grid versus air gap". Oral Surgery, Oral Medicine, Oral Pathology 77, n.º 1 (janeiro de 1994): 86–89. http://dx.doi.org/10.1016/s0030-4220(06)80113-1.
Texto completo da fontePARKER, D. A., e G. M. DONNISON. "AN AIR‐GAP INSULATED PISTON". Industrial Lubrication and Tribology 39, n.º 4 (abril de 1987): 124–31. http://dx.doi.org/10.1108/eb053352.
Texto completo da fonteHuang, Cui, Qianwen Chen e Zheyao Wang. "Air-Gap Through-Silicon Vias". IEEE Electron Device Letters 34, n.º 3 (março de 2013): 441–43. http://dx.doi.org/10.1109/led.2013.2239601.
Texto completo da fonteJuhl-Olsen, Peter. "Air Gap Sign in Ultrasound". A & A Practice 12, n.º 7 (abril de 2019): 256–57. http://dx.doi.org/10.1213/xaa.0000000000000947.
Texto completo da fonteKofler, H., e E. Reisinger. "Inductances of air gap generators". IEEE Transactions on Magnetics 24, n.º 1 (1988): 63–65. http://dx.doi.org/10.1109/20.43857.
Texto completo da fonteSeung Won Paek e Kwang Seok Seo. "Air-gap stacked spiral inductor". IEEE Microwave and Guided Wave Letters 7, n.º 10 (1997): 329–31. http://dx.doi.org/10.1109/75.631191.
Texto completo da fonteTeses / dissertações sobre o assunto "Air gap"
Carrara, Brent. "Air-Gap Covert Channels". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35103.
Texto completo da fonteaf, Klintberg Tord. "Air Gap Method : Air-Gaps in Building Construction to avoid Dampness & Mould". Doctoral thesis, KTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102873.
Texto completo da fonteJudge, Andy. "Air Gap Elimination in Permanent Magnet Machines". Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-dissertations/123.
Texto completo da fonteRichardson, Christopher. "Bridging the air gap : an information assurance perspective". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/355926/.
Texto completo da fonteNarayan, Aditya. "Investigations on Air-cooled Air Gap Membrane Distillation and Radial Waveguides for Desalination". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78779.
Texto completo da fonteMaster of Science
Lee, Long Hua. "Air-gap sacrificial materials by initiated chemical vapor deposition". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/44292.
Texto completo da fonteIncludes bibliographical references (leaves 81-83).
P(neopentyl methacrylate-co-ethylene glycol dimethacrylate) copolymer, abbreviated as P(npMAco-EGDA), was selected as the potential air-gap sacrificial material among possible combination of twenty monomers and four crosslinkers. P(npMA-co-EGDA) was deposited onto substrates using initiated chemical vapor deposition (iCVD) technique. Spectroscopic data showed the effective incorporation of both components in the copolymer and the integrity of repeating units were retained. The onset temperature of decomposition of P(npMA-co-EGDA) copolymer could be tuned between 290-3500C by varying the composition of the copolymer. The removal rate of polymer was calculated based on interferometry signal-time curve. The activation energy was determined by fitting the rate of decomposition with logistic model and found to be 162.7+8kJ/mole, which was similar to published data. Flash pyrolysis gas chromatography mass spectroscopy analysis showed that the products of thermal decomposition are monomers, rearranged small molecules and low oligomers. The modulus and the hardness were in the range of 3.9 to 5.5 GPa and 0.38 to 0.75 GPa, respectively, and were higher than those of linear poly(methyl methacrylate) (PMMA). Air-gap structures were constructed in the following scheme: P(npMA-co-EGDA) was deposited on the substrate by iCVD, followed by spincasting PMMA electron beam resist and scanning electron beam lithography to implement patterns on the resist. Reactive ion etching (RIE) was then applied to simultaneously etch the PMMA resist and P(npMA-co-EGDA) sacrificial material away in a controlled manner, leaving the patterned sacrificial material on the substrate.
(cont.) A layer of porous silica was deposited to cover the substrate and the patterned sacrificial material by plasma-enhanced chemical vapor deposition (PECVD) at 2500C and the sample was thermally annealed to allow the decomposed fragments to diffuse through the overlayer of silica. Using the scheme described above, it was possible to construct air-gap structures with feature size of 200nm and feature height of 1 00nm.
by Long Hua Lee.
S.M.
Delmont, Andres Emilio. "Shape distortion and air gap formation during continuous casting". Thesis, Sheffield Hallam University, 1985. http://shura.shu.ac.uk/19549/.
Texto completo da fonteMauseth, Frank. "Charge accumulation in rod-plane air gap with covered rod". Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1489.
Texto completo da fonteThe focus of this work has been on hybrid insulation in inhomogeneous electric fields under lightning impulse voltage stress. The principal idea behind hybrid insulation is the intentional use of surface charges to re-distribute the electric field within an insulation system. This allows a significant part of the electric stress to be transferred from the dielectric weaker gas to the dielectric stronger solid insulation thus increasing the total electric strength of the insulation system.
The concept has been theoretically and experimentally addressed by means of a hemispheric rod covered with a layer of solid insulation. Discharge activity and surface charge accumulation have been studied in an air gap by measuring the voltage and discharge current and recording the discharge activity using a high-speed digital camera. New methods have been introduced and evaluated for the evaluation of surface charge measurements.
The experiments found that the increase in positive inception voltage was considerable compared to uncovered rods. This increase varied from 35% up to 100% depending on the electrode distance. The increase in breakdown strength is higher than the increase in inception voltage and dependent on the covered length of the rod. During the application of a lightning impulse, the discharge activity spreads upwards along the rod and out into the air gap. Positive discharges form numerous branches and bridge the air gap in most cases. Negative discharges are more diffuse, less light intensive and only form a few branches around the tip of the rod where the electric field is the strongest. Discharge activity along the insulating surface has been observed where the background field is lower than the critical electric field strength. Visible discharge activity is observed where the background field is higher than 2.3 kV/mm and 2.5 kV/mm for positive and negative impulses respectively.
During the application of lightning impulses, discharge activity starts in the air gap around the tip where the electric field is highest and spreads upwards along the rod. As expected, negative charges accumulate on the surface in the case of positive impulse voltage and vice versa. However, after more powerful discharges during negative impulse voltage application, surface charges of both polarities have been observed.
Accumulated surface charges decay exponentially with a time constant τ varying from micro-seconds to hours depending on the material properties of the solid insulation. The dominating relaxation mechanism is found to be conduction through the solid insulation.
Improved methods to calculate surface charges based on probe response for a 2D axial symmetric case have been developed and evaluated. The method that is best suited for this purpose is the λ-method with truncated singular value decomposition (TSVD) as regularization.
Surface charge calculations show that the accumulated surface charges for the used configuration typically have a maximum value of 0.6 to 1.5 µC/m² and 0.4 to 1 µC/m² after positive and negative impulses respectively. The surface charge density in the areas with the highest discharge activity is relatively uniform. Further upwards along the rod, the surface charge density is reduced relatively fast towards zero, and in some cases, it changes polarity before approaching zero.
Alkhudhiri, Abdullah Ibrahim. "Treatment of saline solutions using air gap membrane distillation (AGMD)". Thesis, Swansea University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678440.
Texto completo da fonteRandhawa, Dev. "A synchronous generator monitoring system utilizing air-gap flux signals /". Title page, table of contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09ENS/09ensr191.pdf.
Texto completo da fonteLivros sobre o assunto "Air gap"
Barraza, Rosa Isela Román. Virtual air gap analysis. Ottawa: National Library of Canada, 2003.
Encontre o texto completo da fonteFligier, Jarosław. Nowe potencjometryczne czujniki cyjankowe i siarczkowe typu Air-Gap. Gliwice: Wydawn. Politechniki Śląskiej, 1993.
Encontre o texto completo da fonteThomas, Mark W. Evaluation and optimization of axial air gap propulsion motors for naval vessels. Springfield, Va: Available from National Technical Information Service, 1996.
Encontre o texto completo da fonteKousa, Maunu. Numerical and experimental modelling of gas flow and heat transfer in the air gap of an electric machine. Lappeenranta, Finland: Lappeenranta University of Technology, 2002.
Encontre o texto completo da fonteIEEE Power Engineering Society. Surge Protective Devices Committee. e IEEE Standards Board, eds. IEEE guide for the application of gas tube and air gap arrester low-voltage (equal to or less than 1000 Vrms or 1200 Vdc) surge-protective devices. New York, N.Y: Institute of Electrical and Electronics Engineers, 1993.
Encontre o texto completo da fonteGas turbines: A handbook of air, land, and sea applications. Amsterdan: Butterworth-Heinemann, 2008.
Encontre o texto completo da fonteLyons, William C. Air and gas drilling manual. 3a ed. Burlington, MA: Gulf Professional Pub., 2009.
Encontre o texto completo da fonteP, Rollins John, e Compressed Air and Gas Institute., eds. Compressed air and gas handbook. 5a ed. Englewood Cliffs, N.J: Prentice Hall, 1988.
Encontre o texto completo da fonteP, Rollins John, e Compressed Air and Gas Institute., eds. Compressed air and gas handbook. Englewood Cliffs, N.J: Prentice-Hall, 1989.
Encontre o texto completo da fonteTest Specifications for Low Voltage Air Gap Protective Devices. Ieee, 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Air gap"
Gooch, Jan W. "Air Gap". In Encyclopedic Dictionary of Polymers, 23–24. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_356.
Texto completo da fontevan den Berg, Bibi. "Mind the Air Gap". In Data Protection on the Move, 1–24. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7376-8_1.
Texto completo da fonteDziubak, Piotr P. "Air transport connectivity gap". In Harmonising Regulatory and Antitrust Regimes for International Air Transport, 213–19. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge research in competition law: Routledge, 2018. http://dx.doi.org/10.4324/9781351134910-18.
Texto completo da fonteTomaszewska, Maria. "Air Gap Membrane Distillation (AGMD)". In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_623-2.
Texto completo da fonteTomaszewska, Maria. "Air Gap Membrane Distillation (AGMD)". In Encyclopedia of Membranes, 33–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_623.
Texto completo da fonteVan der Mussele, Tom, Babak Habibnia e Pavel Gladyshev. "Remote Air-Gap Live Forensics". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 182–203. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68734-2_10.
Texto completo da fonteSalon, S. J. "Air-Gap Elements for Electrical Machines". In Power Electronics and Power Systems, 197–207. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2349-9_10.
Texto completo da fonteQiu, Zhibin, Jiangjun Ruan e Shengwen Shu. "Air Gap Discharge Voltage Prediction Model". In Power Systems, 43–66. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-5163-0_3.
Texto completo da fonteVukosavic, Slobodan N. "Magnetic Field in the Air Gap". In Electrical Machines, 153–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0400-2_8.
Texto completo da fonteMasmoudi, Ahmed. "Air Gap Magnetomotive Force: Formulation and Analysis". In SpringerBriefs in Electrical and Computer Engineering, 1–30. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0920-5_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Air gap"
Agadakos, Ioannis, Chien-Ying Chen, Matteo Campanelli, Prashant Anantharaman, Monowar Hasan, Bogdan Copos, Tancrède Lepoint, Michael Locasto, Gabriela F. Ciocarlie e Ulf Lindqvist. "Jumping the Air Gap". In CCS '17: 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3140241.3140252.
Texto completo da fonteGuri, Mordechai, e Matan Monitz. "LCD TEMPEST Air-Gap Attack Reloaded". In 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE). IEEE, 2018. http://dx.doi.org/10.1109/icsee.2018.8646277.
Texto completo da fonteClark, P. E. "Air-gap sparking - cause and cure". In Fifth International Conference on `Electrical Safety in Hazardous Environments'. IEE, 1994. http://dx.doi.org/10.1049/cp:19940390.
Texto completo da fonteGuri, Mordechai. "USBCulprit: USB-borne Air-Gap Malware". In EICC '21: European Interdisciplinary Cybersecurity Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3487405.3487412.
Texto completo da fonteGuri, Mordechai. "AirKeyLogger: Hardwareless Air-Gap Keylogging Attack". In 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2023. http://dx.doi.org/10.1109/compsac57700.2023.00089.
Texto completo da fonteMingji Liu, Zhi Han, Yawei Pei e Pengfei Shi. "Optimization of permanent magnet motor air-gap flux density based on the non-uniform air gap". In 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, 2013. http://dx.doi.org/10.1109/mec.2013.6885604.
Texto completo da fonteChen, Hsien-Wei, Shin-Puu Jeng, Hao-Yi Tsai, Yu-Wen Liu, CH Yu e YC Sun. "A Self-Aligned Air Gap Interconnect Process". In 2008 International Interconnect Technology Conference - IITC. IEEE, 2008. http://dx.doi.org/10.1109/iitc.2008.4546917.
Texto completo da fonteYilin Mao, Y. R. Padooru, Kai-Fong Lee, A. Z. Elsherbeni e Fan Yang. "Air gap tuning of patch antenna resonance". In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5997184.
Texto completo da fonteRoggia, S., G. Roggia e A. Gimeno. "Adjustable air gap machine for aerospace applications". In 2020 International Conference on Electrical Machines (ICEM). IEEE, 2020. http://dx.doi.org/10.1109/icem49940.2020.9270902.
Texto completo da fonteLetavin, Denis A. "Compact Microstrip Antenna with an Air Gap". In 2018 IEEE East-West Design & Test Symposium (EWDTS). IEEE, 2018. http://dx.doi.org/10.1109/ewdts.2018.8524777.
Texto completo da fonteRelatórios de organizações sobre o assunto "Air gap"
Dickson, Peter, Alan M. Novak, Timothy J. Foley e Christopher Charles Campbell. PBX 9502 air-gap tests. Office of Scientific and Technical Information (OSTI), junho de 2017. http://dx.doi.org/10.2172/1367819.
Texto completo da fonteGregory, Douglas W. Independent Air Operations: A Gap in Joint Doctrine. Fort Belvoir, VA: Defense Technical Information Center, maio de 1999. http://dx.doi.org/10.21236/ada370623.
Texto completo da fonteBrozovsky, Johannes, Odne Oksavik e Petra Rüther. Temperature measurements in the air gap of highly insulated wood-frame walls in a Zero Emission Building. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595903_2.
Texto completo da fonteBrozovsky, Johannes, Odne Oksavik e Petra Rüther. Temperature measurements in the air gap of highly insulated wood-frame walls in a Zero Emission Building. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595903.
Texto completo da fonteHarris, Paul D. Reducing the Force Protection Continuity Gap Created by the Air Expeditionary Force. Fort Belvoir, VA: Defense Technical Information Center, abril de 2001. http://dx.doi.org/10.21236/ada406913.
Texto completo da fonteAlam, Naveed, Ali Nadjai, Chrysanthos Maraveas, Konstantinos Daniel Tsavdaridis e Faris Ali. EFFECT OF AIR-GAP ON PERFORMANCE OF FABRICATED SLIM FLOOR BEAMS IN FIRE. The Hong Kong Institute of Steel Construction, dezembro de 2018. http://dx.doi.org/10.18057/icass2018.p.043.
Texto completo da fonteDeLancey, Amanda L., Caitlin E. Harris e Andrew J. Ramsey. Green Acquisition Gap Analysis of the United States Air Force Operational Contracting Organizations. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2011. http://dx.doi.org/10.21236/ada555666.
Texto completo da fonteElsherbeni, Atef Z., Vicente Rodriguez-Pereyra e Charles E. Smith. The Effect of an Air Gap on the Coupling Between Two Planar Microstrip Lines. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1995. http://dx.doi.org/10.21236/ada300530.
Texto completo da fontePalmby, William G. Enhancement of the Civil Reserve Air Fleet; An Alternative for Bridging the Airlift Gap,. Fort Belvoir, VA: Defense Technical Information Center, março de 1996. http://dx.doi.org/10.21236/ada306944.
Texto completo da fonteBrown, Francis M. The Evolution of Airpower Theory and Future Air Strategies for Employment in the Gap. Fort Belvoir, VA: Defense Technical Information Center, maio de 2005. http://dx.doi.org/10.21236/ada463395.
Texto completo da fonte