Siga este link para ver outros tipos de publicações sobre o tema: Air gap.

Artigos de revistas sobre o tema "Air gap"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Air gap".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Houghtaling, Steven. "Air‐gap hydrophone". Journal of the Acoustical Society of America 94, n.º 4 (outubro de 1993): 2466–67. http://dx.doi.org/10.1121/1.407428.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Heyn, Ch, M. Schmidt, S. Schwaiger, A. Stemmann, S. Mendach e W. Hansen. "Air-gap heterostructures". Applied Physics Letters 98, n.º 3 (17 de janeiro de 2011): 033105. http://dx.doi.org/10.1063/1.3544047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Byres, Eric. "The air gap". Communications of the ACM 56, n.º 8 (agosto de 2013): 29–31. http://dx.doi.org/10.1145/2492007.2492018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kerut, Edmund Kenneth, Curtis Hannawalt, Charles T. Everson e Navin C. Nanda. "The Air Gap Sign". Echocardiography 31, n.º 3 (24 de janeiro de 2014): 400–401. http://dx.doi.org/10.1111/echo.12513.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Benson, Byron W., Neil L. Frederiksen e Paul W. Goaz. "Grid versus air gap". Oral Surgery, Oral Medicine, Oral Pathology 77, n.º 1 (janeiro de 1994): 86–89. http://dx.doi.org/10.1016/s0030-4220(06)80113-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

PARKER, D. A., e G. M. DONNISON. "AN AIR‐GAP INSULATED PISTON". Industrial Lubrication and Tribology 39, n.º 4 (abril de 1987): 124–31. http://dx.doi.org/10.1108/eb053352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Huang, Cui, Qianwen Chen e Zheyao Wang. "Air-Gap Through-Silicon Vias". IEEE Electron Device Letters 34, n.º 3 (março de 2013): 441–43. http://dx.doi.org/10.1109/led.2013.2239601.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Juhl-Olsen, Peter. "Air Gap Sign in Ultrasound". A & A Practice 12, n.º 7 (abril de 2019): 256–57. http://dx.doi.org/10.1213/xaa.0000000000000947.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kofler, H., e E. Reisinger. "Inductances of air gap generators". IEEE Transactions on Magnetics 24, n.º 1 (1988): 63–65. http://dx.doi.org/10.1109/20.43857.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Seung Won Paek e Kwang Seok Seo. "Air-gap stacked spiral inductor". IEEE Microwave and Guided Wave Letters 7, n.º 10 (1997): 329–31. http://dx.doi.org/10.1109/75.631191.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

He, Bo, Naikui Gao, Haiyun Jin e Zongren Peng. "Effects of Dynamic Air Gap on Air Gap Breakdown Discharge in Sand/Dust Environment". IEEJ Transactions on Electrical and Electronic Engineering 5, n.º 6 (13 de outubro de 2010): 724–25. http://dx.doi.org/10.1002/tee.20598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Khalifa, Atia E. "Performances of air gap and water gap MD desalination modules". Water Practice and Technology 13, n.º 1 (1 de março de 2018): 200–209. http://dx.doi.org/10.2166/wpt.2018.034.

Texto completo da fonte
Resumo:
Abstract Membrane distillation (MD) is a promising thermally-driven membrane separation technology for water desalination. In MD, water vapor is being separated from the hot feed water solution using a micro-porous hydrophobic membrane, due to the difference in vapor pressures across the membrane. In the present work, experiments are conducted to compare the performance of water gap membrane distillation (WGMD) and air gap membrane distillation (AGMD) modules under the main operating and design conditions including the feed and coolant temperatures, membrane material and pore sizes, and the gap width. Results showed that the WGMD module produced higher fluxes as compared to the AGMD module, for all test conditions. The feed temperature is the dominant factor affecting the system flux. The permeate flux increases with reducing the gap width for both water and air gap modules. However, WGMD module was found to be less sensitive to the change in the gap width compared to the AGMD module. The PTFE membrane produced higher permeate flux as compared to the PVDF membrane. Bigger mean pore diameter enhanced the permeate flux, however, this enhancement is marginal at high feed temperatures. With increasing the feed temperature, the GOR values increase and the specific energy consumption decreases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Wu, Zhiqiang, e Fei Guo. "Finned Tubular Air Gap Membrane Distillation". Membranes 13, n.º 5 (8 de maio de 2023): 498. http://dx.doi.org/10.3390/membranes13050498.

Texto completo da fonte
Resumo:
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE membrane and finned tubes were constructed in this work, and three representative air gap structures, including tapered finned tube, flat finned tube, and expanded finned tube, were designed. Membrane distillation experiments were carried out in the form of water cooling and air cooling, and the influences of air gap structures, temperature, concentration, and flow rate on the transmembrane flux were analyzed. The good water-treatment ability of the finned tubular air gap membrane distillation model and the applicability of air cooling for the finned tubular air gap membrane distillation structure were verified. The membrane distillation test results show that with the tapered finned tubular air gap structure, the finned tubular air gap membrane distillation has the best performance. The maximum transmembrane flux of the finned tubular air gap membrane distillation could reach 16.3 kg/m2/h. Strengthening the convection heat transfer between air and fin tube could increase the transmembrane flux and improve the efficiency coefficient. The efficiency coefficient (σ) could reach 0.19 under the condition of air cooling. Compared with the conventional air gap membrane distillation configuration, air cooling configuration for air gap membrane distillation is an effective way to simplify the system design and offers a potential way for the practical applications of membrane distillation on an industrial scale.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Takeuch, Yoshio. "Air-bone Gap in Normal Hearings." AUDIOLOGY JAPAN 37, n.º 4 (1994): 295–99. http://dx.doi.org/10.4295/audiology.37.295.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Nohguchi, Yasuaki. "Air-gap formation by snow melting". Annals of Glaciology 18 (1993): 251–56. http://dx.doi.org/10.3189/s0260305500011605.

Texto completo da fonte
Resumo:
This paper describes theoretically the formation of air gaps at the lower boundary of a snow cover during basal melting. In general, initiation of the formation of air gaps is dependent on both the horizontal heterogeneity of the snowmelt rate and viscous deformation. From this point of view, we propose a dimensionless parameter ξ (bridge-effect ratio) which is a function of the amplitude and wavelength of the heterogeneity of the snowmelt rate at the base, and the density, thickness and viscosity of the snow. This parameter expresses the heterogeneity of the normal stress at the base. We derive a necessary condition for air-gap formation in terms of the bridge-effect ratio, and show that a large amplitude, a small wavelength, a high density, a thin layer and/or high viscosities are favorable for air-gap formation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Nohguchi, Yasuaki. "Air-gap formation by snow melting". Annals of Glaciology 18 (1993): 251–56. http://dx.doi.org/10.1017/s0260305500011605.

Texto completo da fonte
Resumo:
This paper describes theoretically the formation of air gaps at the lower boundary of a snow cover during basal melting. In general, initiation of the formation of air gaps is dependent on both the horizontal heterogeneity of the snowmelt rate and viscous deformation. From this point of view, we propose a dimensionless parameter ξ (bridge-effect ratio) which is a function of the amplitude and wavelength of the heterogeneity of the snowmelt rate at the base, and the density, thickness and viscosity of the snow. This parameter expresses the heterogeneity of the normal stress at the base. We derive a necessary condition for air-gap formation in terms of the bridge-effect ratio, and show that a large amplitude, a small wavelength, a high density, a thin layer and/or high viscosities are favorable for air-gap formation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Shahu, Vandita T., e S. B. Thombre. "Air gap membrane distillation: A review". Journal of Renewable and Sustainable Energy 11, n.º 4 (julho de 2019): 045901. http://dx.doi.org/10.1063/1.5063766.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ma, Yilong, e Lars Cleemann. "An ammonia-sensing air gap microelectrode". Analytical Biochemistry 174, n.º 2 (novembro de 1988): 666–71. http://dx.doi.org/10.1016/0003-2697(88)90071-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Zaitsev, I. O., A. S. Levytskyi e V. E. Sydorchuk. "AIR GAP CONTROL SYSTEM FOR HYDROGENERATORS". Devices and Methods of Measurements 8, n.º 2 (9 de junho de 2017): 122–30. http://dx.doi.org/10.21122/2220-9506-2017-8-2-122-130.

Texto completo da fonte
Resumo:
In this paper, we report of the solving the actual problem of control the air gap in the hydrogenerators. The aim of the study was development of a computerized information-measuring system for measuring the air gap in the hydrogenator, which used two capacitive sensors with parallel coplanar electrodes, and the method of determining the shape of the envelope parameters hydrogenerator rotor poles relative to the center axis of rotation, using the measurement results of the air gap.In practical studies of the sensor circuit it has been shown that its use allows for the informative value of the sensor capacitance conversion function to obtain a high accuracy and resolution measurement with digital linearization of converting function of the sensor with use program utility. To determine the form deviations of the envelope line of the rotor pole from the ideal cylinder, which is one of the main structural defects of the technological errors as results the distortion of the shape of the air gap in the hydrogenator, when the machine was manufacture and assembly. It is proposed to describe the shape of the envelope to use a Fourier transform. Calculation of the coefficients of the Fourier series is performed using the method of least squares as the regression coefficients.Application of this method in processing the measuring data in a computerized information-measuring system the developed with the primary converter with coplanar parallel electrodes allowed attaining the high measurement accuracy and resolution informative in magnitude of the capacity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Humaid Al Khayari, Samira Aamir, e Norizan Mohd Kassim. "SERVICE QUALITY: GAP IN AIR TRANSPORTATION". Proceedings on Engineering Sciences 1, n.º 2 (1 de junho de 2019): 321–34. http://dx.doi.org/10.24874/pes01.02.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Souers, P. Clark, Stan Ault, Rex Avara, Kerry L Bahl, Ron Boat, Bruce Cunningham, Doug Gidding et al. "Air Gap Effects in LX-17". Propellants, Explosives, Pyrotechnics 31, n.º 4 (agosto de 2006): 294–98. http://dx.doi.org/10.1002/prep.200600040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Wang, Qi, Shiyu Xing, Jian Ma e Aoxiang Liu. "Research air gap on electromagnetic field of high speed motor under the influence of air gap". Journal of Physics: Conference Series 2083, n.º 2 (1 de novembro de 2021): 022089. http://dx.doi.org/10.1088/1742-6596/2083/2/022089.

Texto completo da fonte
Resumo:
Abstract High speed motor are mainly used in aerospace, petrochemical and NC machining fields. Complex electromagnetic field is distributed in the motor. With the continuous maturity of asynchronous motor technology, research on magnetic field has been rapidly developed. In this paper, the changes of air gap and magnetic field of high speed motor under different working conditions is introduced. The magnetic field model of high-speed motor with Maxwell electromagnetic which established theory through Ansoft finite element software. The distribution of electromagnetic field in the motor is explored. The results show that the magnetic field distribution of induction motor tends to increase with the increase of the air gap magnetic field. Therefore, this study has an important guiding significance for the motor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Narayan, A., e R. Pitchumani. "Analysis of an air-cooled air gap membrane distillation module". Desalination 475 (fevereiro de 2020): 114179. http://dx.doi.org/10.1016/j.desal.2019.114179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Khalifa, Atia E., e Suhaib M. Alawad. "Air gap and water gap multistage membrane distillation for water desalination". Desalination 437 (julho de 2018): 175–83. http://dx.doi.org/10.1016/j.desal.2018.03.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ueda, R., T. Sonoda e K. Takayama. "Detection of air-gap flux and electromagnetic torque in air-gap of induction motor using amorphous ribbon." Journal of the Magnetics Society of Japan 11, n.º 2 (1987): 341–44. http://dx.doi.org/10.3379/jmsjmag.11.341.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Sơn, Lê Thanh, Nguyễn Trần Dũng e Nguyễn Trần Điện. "EFFECT OF TEMPERATURE AND AIR-GAP WIDTH ON THE DESALINATION EFFICIENCY OF AIR-GAP MEMBRANE DISTILLATION MODULE". Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên 225, n.º 02 (18 de fevereiro de 2020): 17–23. http://dx.doi.org/10.34238/tnu-jst.2020.02.2354.

Texto completo da fonte
Resumo:
Khử mặn nước biển là một giải pháp đầy hứa hẹn có thể được áp dụng để giải quyết vấn đề khan hiếm nước ngọt và nước sạch ở Việt Nam, đặc biệt là ở các vùng hải đảo và vùng sâu vùng xa. Gần đây, việc áp dụng các kỹ thuật chưng cất màng để khử mặn đang thu hút sự chú ý của nhiều nhà khoa học vì tính đơn giản, dễ vận hành và tiết kiệm năng lượng. Một mô-đun chưng cất màng đệm khí (AGMD) đã được chế tạo trên cơ sở màng PE mật độ thấp với kích thước 12 x 5 cm, độ xốp, chiều dày và kích thước lỗ trung bình lần lượt là là 85%, 76 µm, và 0,3 µm. Chiều dày của lớp đệm khí được kiểm soát bởi sự thay đổi số lượng tấm lưới nhựa trong buồng thấm. Kết quả thu được cho thấy chất lượng của dung dịch thấm qua màng tương đương với chất lượng của nước cất và nhiệt độ dòng cấp, chiều dày của lớp đệm khí ảnh hưởng mạnh đến hiệu quả khử mặn của mô-đun AGMD. Điều kiện tối ưu được tìm thấy là nhiệt độ dòng cấp là 60°C, chiều dày của lớp đệm khí là 5 mm, khi đó thông lượng thu hồi nước đạt 2,5 L.m-2.h-1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

af Klintberg, Tord, e Folke Björk. "Air Gap Method: Dependence of water removal on RH in room and height of floor air gap". Building and Environment 56 (outubro de 2012): 1–7. http://dx.doi.org/10.1016/j.buildenv.2012.02.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Huang, Cui, Dong Wu e Zheyao Wang. "Thermal Reliability Tests of Air-Gap TSVs With Combined Air-SiO2Liners". IEEE Transactions on Components, Packaging and Manufacturing Technology 6, n.º 5 (maio de 2016): 703–11. http://dx.doi.org/10.1109/tcpmt.2016.2544761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

KANZAKI, Yuto, Yasuhiro SHIMAZAKI e Naoto HARUKI. "Measurement of Air Field in Air Gap around Simulated Human Body". Proceedings of the Symposium on sports and human dynamics 2018 (2018): B—25. http://dx.doi.org/10.1299/jsmeshd.2018.b-25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

af Klintberg, Tord, e Folke Björk. "Air Gap Method: measurements of airflow inside air gaps of walls". Structural Survey 26, n.º 4 (29 de agosto de 2008): 343–63. http://dx.doi.org/10.1108/02630800810906584.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Domens, P., J. Dupuy, A. Gibert, R. Diaz, B. Hutzler, J. P. Riu e F. Ruhling. "Large air-gap discharge and Schlieren techniques". Journal of Physics D: Applied Physics 21, n.º 11 (14 de novembro de 1988): 1613–23. http://dx.doi.org/10.1088/0022-3727/21/11/011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Boucinha, M., V. Chu e J. P. Conde. "Air-gap amorphous silicon thin film transistors". Applied Physics Letters 73, n.º 4 (27 de julho de 1998): 502–4. http://dx.doi.org/10.1063/1.121914.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Busch‐Vishniac, Ilene J., Robert L. Wallace e James E. West. "Electret transducer with variable effective air gap". Journal of the Acoustical Society of America 84, n.º 1 (julho de 1988): 467. http://dx.doi.org/10.1121/1.396872.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Pfammatter, Alain, Eva Novoa e Thomas Linder. "Can Myringoplasty Close the Air-Bone Gap?" Otology & Neurotology 34, n.º 4 (junho de 2013): 705–10. http://dx.doi.org/10.1097/mao.0b013e3182898550.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Morzuch, Waldemar. "Critical value of electric motor air gap". Mechanik, n.º 11 (novembro de 2015): 874–76. http://dx.doi.org/10.17814/mechanik.2015.11.524.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Carvalho, Silvânia A., e Stefano De Leo. "Light transmission through a triangular air gap". Journal of Modern Optics 60, n.º 6 (março de 2013): 437–43. http://dx.doi.org/10.1080/09500340.2013.783637.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Qishan, Gu, e Gao Hongzhan. "Air Gap Field for Pm Electric Machines". Electric Machines & Power Systems 10, n.º 5-6 (janeiro de 1985): 459–70. http://dx.doi.org/10.1080/07313568508909147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

ALKLAIBI, A., e N. LIOR. "Transport analysis of air-gap membrane distillation". Journal of Membrane Science 255, n.º 1-2 (15 de junho de 2005): 239–53. http://dx.doi.org/10.1016/j.memsci.2005.01.038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Clough, Benjamin, Jianming Dai e Xi-Cheng Zhang. "Laser air photonics: beyond the terahertz gap". Materials Today 15, n.º 1-2 (janeiro de 2012): 50–58. http://dx.doi.org/10.1016/s1369-7021(12)70020-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gallimberti, I., G. Bacchiega, Anne Bondiou-Clergerie e Philippe Lalande. "Fundamental processes in long air gap discharges". Comptes Rendus Physique 3, n.º 10 (dezembro de 2002): 1335–59. http://dx.doi.org/10.1016/s1631-0705(02)01414-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tambo, T., J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki e M. Kawasaki. "Air-gap gating of MgZnO/ZnO heterostructures". Journal of Applied Physics 116, n.º 8 (28 de agosto de 2014): 084310. http://dx.doi.org/10.1063/1.4894155.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hoofman, R. J. O. M., R. Caluwaerts, J. Michelon, P. Herrero Bernabé, J. P. Gueneau de Mussy, C. Bruynseraede, J. M. Lee, S. List, P. H. L. Bancken e G. Beyer. "Self-aligned multi-level air gap integration". Microelectronic Engineering 83, n.º 11-12 (novembro de 2006): 2150–54. http://dx.doi.org/10.1016/j.mee.2006.09.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Abu Al‐Rub, Fahmi A., Fawzi Banat e Khalid Bani‐Melhem. "Sensitivity Analysis of Air Gap Membrane Distillation". Separation Science and Technology 38, n.º 15 (10 de janeiro de 2003): 3645–67. http://dx.doi.org/10.1081/ss-120024222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Busch‐Vishniac, Ilene J., Robert L. Wallace e James E. West. "Electret transducers with variable actual air gap". Journal of the Acoustical Society of America 77, n.º 5 (maio de 1985): 1983. http://dx.doi.org/10.1121/1.391765.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Howey, David A., Peter R. N. Childs e Andrew S. Holmes. "Air-Gap Convection in Rotating Electrical Machines". IEEE Transactions on Industrial Electronics 59, n.º 3 (março de 2012): 1367–75. http://dx.doi.org/10.1109/tie.2010.2100337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Stiles, Enrique M. "Push-push multiple magnetic air gap transducer". Journal of the Acoustical Society of America 119, n.º 4 (2006): 1908. http://dx.doi.org/10.1121/1.2195806.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Adamiak, Kazimierz. "Optimization of a Magnetic Separator Air-Gap". Magnetic Separation News 2, n.º 2 (1 de janeiro de 1986): 97–113. http://dx.doi.org/10.1155/1986/80168.

Texto completo da fonte
Resumo:
The paper describes a method of optimization of a magnetic separator air-gap which serves to separate magnetic particles from volatile power plant dust. The method consists in seeking the air-gap dimensions, assuming that the shape of poles is known on the basis of magnetic force field analysis, or in seeking the shape of poles for the assumed force field distribution. In the second case the problem is reduced to solving a certain inverse boundary problem of the Dirichlet type.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Krol, A., D. A. Bassano, C. C. Chamberlain e S. C. Prasad. "Scatter reduction in mammography with air gap". Medical Physics 23, n.º 7 (julho de 1996): 1263–70. http://dx.doi.org/10.1118/1.597869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Bindels, Martijn, Niels Brand e Bart Nelemans. "Modeling of semibatch air gap membrane distillation". Desalination 430 (março de 2018): 98–106. http://dx.doi.org/10.1016/j.desal.2017.12.036.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Xu, Shiming, Lin Xu, Xi Wu, Ping Wang, Dongxu Jin, Junyong Hu, Shuping Zhang, Qiang Leng e Debing Wu. "Air-gap diffusion distillation: Theory and experiment". Desalination 467 (outubro de 2019): 64–78. http://dx.doi.org/10.1016/j.desal.2019.05.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia