Siga este link para ver outros tipos de publicações sobre o tema: Amino-carboxylic.

Artigos de revistas sobre o tema "Amino-carboxylic"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Amino-carboxylic".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Siutkina, Alena I., Ramiz R. Makhmudov e Daria A. Shipilovskikh. "Synthesis and analgesic activity evaluation of derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[<i>b</i>]thiophene-3-carboxylic acid". Chimica Techno Acta 8, n.º 4 (22 de novembro de 2021): 20218404. http://dx.doi.org/10.15826/chimtech.2021.8.4.04.

Texto completo da fonte
Resumo:
The synthesis of new derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid is described. Starting 2-{[5-aryl-2-oxofuran-3(2H)-ylidene]amino}thiophene-3-carboxylic acids were obtained by intramolecular cyclisation of substituted 4-aryl-4-oxo-2-thienylaminobut-2-enoic acids in acetic anhydride. New derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acids were obtained via decyclization reaction of 2-{[5-aryl-2-oxofuran-3(2H)-ylidene]amino}thiophene-3-carboxylic acids. The structure of the compounds obtained was confirmed by the 1H and 13C NMR spectroscopy, IR spectrometry and elemental analysis methods. Analgesic activity of new compounds has been studied by the “hot plate” method on outbred white mice of both sexes with intraperitoneal injection. It was found that derivatives of 2-[(1,4-dioxo-1-amino-4-arylbutyl-2-en-2-yl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid possess analgesic effect exceeding the effect of the comparison drug metamizole.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Кудрявский, Дмитрий Леонович, Елена Константиновна Фомина, Людмила Юльевна Тычинская, Евгений Доминикович Скаковский e Светлана Евгеньевна Богушевич. "NMR spectroscopy of Cu(II) complexes with acrylamide and sodium acrylate copolymer and ω-amino acids". Journal of the Belarusian State University. Chemistry, n.º 1 (12 de abril de 2021): 85–98. http://dx.doi.org/10.33581/2520-257x-2021-1-85-98.

Texto completo da fonte
Resumo:
Macromolecular complexes of acrylamide and sodium acrylate copolymer with microelements, including Cu(II), may form at preparation of crop protection and stimulation compositions, where the copolymer serves as an adhesive, water-retaining and film-forming agent. Preparations for crop production may also contain amino acids that protect plants under stressful conditions (cold, dry, etc.). Carboxylic groups of copolymer, carboxylic and amino groups of amino acids may be involved in mixed Cu(II) ions complexes formation. Number of methylene groups separating carboxylic and amino group of amino acids affects its ability to form a stable chelate cycle and, therefore, ligand composition of mixed Cu(II) ions complexes with acrylamide and sodium acrylate copolymer and amino acid. This work is aimed at determining the ligand composition of mixed macromolecular Cu(II) ion complexes with acrylamide and sodium acrylate copolymer and ω-amino acids (β-alanine, γ-aminobutyric acid, ε-aminocaproic acid). 13C and 1H NMR spectroscopy was used to clarify complexes composition. A complex where carboxylic groups of amino acids are ligands has been found to form in aqueous solutions of Cu(II) ions and ω-amino acid (β-alanine, γ-aminobutyric acid, ε-aminocaproic acid) at molar ratio of Cu(II) ions – amino acid equal to 1 : 6. A chelate complex where both carboxylic and amino groups of β-alanine are involved in coordination has been discovered to form in the solution containing Cu(II) ions, β-alanine, as well as acrylamide and sodium acrylate copolymer at molar ratio of Cu(II) – β-alanine – copolymer COO− equal to 1 : 6 : 30. Carboxylic groups of copolymer participate in complex formation as well. Carboxylic groups of both amino acids and the copolymer have been shown to participate in complex formation in aqueous solutions containing Cu(II) ions, either γ-aminobutyric or ε-aminokaproic acid and also acrylamide and sodium acrylate copolymer.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lynch, Daniel E., Tariq Latif, Graham Smith, Karl A. Byriel, Colin H. L. Kennard e Simon Parsons. "Molecular Cocrystals of Carboxylic Acids. XXXI Adducts of 2-Aminopyrimidine and 3-Amino-1,2,4-triazole with Heterocyclic Carboxylic Acids". Australian Journal of Chemistry 51, n.º 5 (1998): 403. http://dx.doi.org/10.1071/c97201.

Texto completo da fonte
Resumo:
A series of molecular adducts of 2-aminopyrimidine and 3-amino-1,2,4-triazole with heterocyclic carboxylic acids have been prepared and characterized by using X-ray powder diffraction and in four cases by single-crystal X-ray diffraction methods. These four compounds are the (1 : 1) adducts of 2-aminopyrimidine with indole-3-acetic acid [(C4H5N3)(C10H9NO2)], N-methylpyrrole-2-carboxylic acid [(C4H5N3)(C6H7NO2)] and thiophen-2-carboxylic acid [(C4H5N3)(C5H4O2S)], and the (1 : 1) adduct of 3-amino-1,2,4-triazole with thiophen-2-carboxylic acid [(C2H4N4)(C5H4O2S)]. Other compounds described are the (1 : 1) adducts of 3-amino-1,2,4-triazole with indole-3-acetic acid and N-methylpyrrole-2-carboxylic acid.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Shahmohammadi, Sayeh, Ferenc Fülöp e Enikő Forró. "Efficient Synthesis of New Fluorinated β-Amino Acid Enantiomers through Lipase-Catalyzed Hydrolysis". Molecules 25, n.º 24 (17 de dezembro de 2020): 5990. http://dx.doi.org/10.3390/molecules25245990.

Texto completo da fonte
Resumo:
An efficient and novel enzymatic method has been developed for the synthesis of β-fluorophenyl-substituted β-amino acid enantiomers through lipase PSIM (Burkholderia cepasia) catalyzed hydrolysis of racemic β-amino carboxylic ester hydrochloride salts 3a–e in iPr2O at 45 °C in the presence of Et3N and H2O. Adequate analytical methods were developed for the enantio-separation of racemic β-amino carboxylic ester hydrochlorides 3a–e and β-amino acids 2a–e. Preparative-scale resolutions furnished unreacted amino esters (R)-4a–e and product amino acids (S)-5a–e with excellent ee values (≥99%) and good chemical yields (>48%).
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wermuth, Urs D., Ian D. Jenkins, Raymond C. Bott, Karl A. Byriel e Graham Smith. "Some Stereochemical Aspects of the Strecker Synthesis and the Bucherer - Bergs Reaction". Australian Journal of Chemistry 57, n.º 5 (2004): 461. http://dx.doi.org/10.1071/ch03202.

Texto completo da fonte
Resumo:
Both the Strecker and Bucherer–Bergs reactions convert the norbornane keto ester methyl bicyclo[2.2.1]hept-6-one-2-endo-carboxylate into the lactam 6-endo-aminobicyclo[2.2.1]heptane-2-endo-carboxylic acid-γ-lactam-6-exo-carboxylic acid. This lactam is unusually stable and cannot be hydrolyzed to the corresponding amino acid. The stereochemistry in the Strecker reaction, in which the amino group is endo, is contrary to that expected from literature precedent. The stereochemistry in the Bucherer–Bergs reaction, in which the amino group is also endo, has been confirmed by X-ray crystallographic analysis of the intermediate spirohydantoin (±)-bicyclo[2.2.1]heptane-2-endo-carboxylic acid-6-spiro-5′-hydantoin.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Lynch, Daniel E., Laura J. Nicholls, Graham Smith, Karl A. Byriel e Colin H. L. Kennard. "Molecular co-crystals of 2-aminothiazole derivatives". Acta Crystallographica Section B Structural Science 55, n.º 5 (1 de outubro de 1999): 758–66. http://dx.doi.org/10.1107/s0108768199003146.

Texto completo da fonte
Resumo:
A series of molecular adducts of 2-aminothiazole derivatives – 2-aminothiazole, 2-amino-2-thiazoline and 2-aminobenzothiazole with the carboxylic-acid-substituted heterocyclics indole-2-carboxylic acid, N-methylpyrrole-2-carboxylic acid and thiophene-2-carboxylic acid – have been prepared and characterized using X-ray powder diffraction and in five cases by single-crystal X-ray diffraction methods. These five compounds are the adducts of 2-amino-2-thiazolium with indole-2-carboxylate [(C3H7N2S)+(C9H6NO2)−], and N-methylpyrrole-2-carboxylate [(C3H7N2S)+-(C6H6NO2)−], 2-aminobenzothiazolium with indole-2-carboxylate [(C7H7N2S)+(C9H6NO2)−], N-methylpyrrole-2-carboxylate [(C7H7N2S)+(C6H6NO2)−] and thiophene-2-carboxylate [(C7H7N2S)+(C5H3O2S)−]. All complexes involve proton transfer, as indicated by IR spectroscopy, while the five crystal structures display similar hydrogen-bonding patterns with the dominant interaction being an R^2_2(8) graph set dimer association between carboxylate groups and the amine/heterocyclic nitrogen sites. Futhermore, in each case a subsiduary interaction between an amino proton and a carboxylate oxygen completes a linear hydrogen-bonded chain. In addition to this, the indole-2-carboxylate molecules in the adduct structure with 2-amino-2-thiazolium form associated dimers which add to the hydrogen-bonding network.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Adams, Jerry L., Teng Man Chen e Brian W. Metcalf. "4-Amino-4,5-dihydrothiophene-2-carboxylic acid". Journal of Organic Chemistry 50, n.º 15 (julho de 1985): 2730–36. http://dx.doi.org/10.1021/jo00215a027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

LI, JORGE P., TOBIAS O. YELLIN, CHARLES W. DEBROSSE e DRAKE S. EGGLESTON. "3-Amino-2-piperidinone-6-carboxylic acid". International Journal of Peptide and Protein Research 34, n.º 4 (12 de janeiro de 2009): 311–18. http://dx.doi.org/10.1111/j.1399-3011.1989.tb01580.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Steinschneider, A., B. Valentine, M. I. Burgar e D. Fiat. "NMR of carboxylic-17O in amino acids". Magnetic Resonance in Chemistry 23, n.º 2 (fevereiro de 1985): 104–10. http://dx.doi.org/10.1002/mrc.1260230211.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Moustafa, Moustafa Sherief, Saleh Mohammed Al-Mousawi, Maghraby Ali Selim, Ahmed Mohamed Mosallam e Mohamed Hilmy Elnagdi. "Organobase-catalyzed three-component reactions for the synthesis of 4H-2-aminopyrans, condensed pyrans and polysubstituted benzenes". Beilstein Journal of Organic Chemistry 10 (14 de janeiro de 2014): 141–49. http://dx.doi.org/10.3762/bjoc.10.11.

Texto completo da fonte
Resumo:
Novel routes for the preparation of 2-amino-4H-pyran-3-carbonitrile 9, amino-arylbenzoic acid ester derivatives 13a,b, 2-aminotetrahydro-4H-chromene-3-carbonitrile 18, 3-amino-4-cyanotetrahydronaphthalene-2-carboxylic acid ester 26 and 4-amino-3,5-dicyanophthalic acid ester derivatives 37a–c were developed. The synthetic methods utilize one-pot reactions of acetylene carboxylic acid esters, α,β-unsaturated nitriles and/or active methylenenitriles in the presence of L-proline or DABCO. Plausible mechanisms are suggested for the formation of the products. Finally, these compounds were used for the efficient synthesis of 6-amino-5-cyanonicotinic acid ester derivatives 31a,b, ethyl 4-amino-5H-pyrano[2,3-d]pyrimidine-6-carboxylates 33a,b, 4-amino-6H-pyrrolo[3,4-g]quinazoline-9-carbonitrile 39, and 1,7-diamino-6-(N'-hydroxycarbamimidoyl)-3-oxo-5-phenyl-3H-isoindole-4-carboxylate (40).
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kowalewska, M., H. Kwiecień, M. Śmist e A. Wrześniewska. "Synthesis of New Benzofuran-2-Carboxylic Acid Derivatives". Journal of Chemistry 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/183717.

Texto completo da fonte
Resumo:
Novel ethyl ester and methylamide of 5-[bis(2-chloroethyl)amino]-7-methoxybenzofuran-2-carboxylic acid as well as (2-hydroxy-1,1-dimethylethyl)amides of 5-bromo- and 5,7-dichlorobenzofuran-2-carboxylic acid were synthesized and characterized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bortoluzzi, Marco, Giulio Bresciani, Fabio Marchetti, Guido Pampaloni e Stefano Zacchini. "MoCl5 as an effective chlorinating agent towards α-amino acids: synthesis of α-ammonium-acylchloride salts and α-amino-acylchloride complexes". Dalton Transactions 44, n.º 21 (2015): 10030–37. http://dx.doi.org/10.1039/c5dt01002k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Lynch, Ciarán C., Zeus A. De los Santos e Christian Wolf. "Chiroptical sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids with metal salts". Chemical Communications 55, n.º 44 (2019): 6297–300. http://dx.doi.org/10.1039/c9cc02525a.

Texto completo da fonte
Resumo:
Optical chirality sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids based on a practical mix-and-measure protocol with readily available copper, iron, palladium, manganese, cerium or rhodium salts is demonstrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Kühl, Olaf, Stephan Millinghaus e Philipp Wehage. "Functionalised, chiral imidazolium compounds from proteinogenic amino acids". Open Chemistry 8, n.º 6 (1 de dezembro de 2010): 1223–26. http://dx.doi.org/10.2478/s11532-010-0097-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Yin, Dengyang, Xunxiu Hu, Dantong Liu, Wencheng Du, Haibo Wang, Mengzhe Guo e Daoquan Tang. "Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives". European Journal of Mass Spectrometry 23, n.º 3 (11 de abril de 2017): 98–104. http://dx.doi.org/10.1177/1469066717700643.

Texto completo da fonte
Resumo:
Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Kathiravan, Perumal, Thangavelu Balakrishnan, Perumal Venkatesan, Kandasamy Ramamurthi, María Judith Percino e Subbiah Thamotharan. "Crystal structure and Hirshfeld surface analysis of 1-carboxy-2-(3,4-dihydroxyphenyl)ethan-1-aminium chloride 2-ammonio-3-(3,4-dihydroxyphenyl)propanoate: a new polymorph ofL-dopa HCl and isotypic with its bromide counterpart". Acta Crystallographica Section E Crystallographic Communications 72, n.º 11 (25 de outubro de 2016): 1628–32. http://dx.doi.org/10.1107/s2056989016016789.

Texto completo da fonte
Resumo:
The title molecular salt, C9H12NO4+·Cl−·C9H11NO4, is isotypic with that of the bromide counterpart [Kathiravanet al.(2016).Acta Cryst.E72, 1544–1548]. The title salt is a second monoclinic polymorph of the L-dopa HCl structure reported earlier in the monoclinic space groupP21[Jandacek & Earle (1971).Acta Cryst.B27, 841–845; Mostad & Rømming (1974).Acta Chemica Scand.B28, 1161–1168]. In the title compound, monoclinic space groupI2, one of the dopa molecules has a positive charge with a protonated α-amino group and the α-carboxylic acid group uncharged, while the second dopa molecule has a neutral charge, the α-amino group is protonated and the α-carboxylic acid is deprotonated. In the previously reported form, a single dopa molecule is observed in which the α-amino group is protonated and the α-carboxylic acid group is uncharged. The invariant and variations of various types of intermolecular interactions present in these two forms of dopa HCl structures are discussed with the aid of two-dimensional fingerprint plots.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Raman, Dr Bhanu, e JunedMunir Shaikh. "SYNTHESIS AND CHARACTERIZATION OF NOVEL AMINO CARBOXYLIC ACIDS." International Journal of Advanced Research 4, n.º 12 (31 de dezembro de 2016): 2095–100. http://dx.doi.org/10.21474/ijar01/2626.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Crea, Francesco, Concetta De Stefano, Antonio Gianguzza, Daniela Piazzese e Silvio Sammartano. "Speciation of poly-amino carboxylic compounds in seawater". Chemical Speciation & Bioavailability 15, n.º 3 (janeiro de 2003): 75–86. http://dx.doi.org/10.3184/095422903782775190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Czekelius, Constantin, e Carl Tzschucke. "Synthesis of Halogenated Carboxylic Acids and Amino Acids". Synthesis 2010, n.º 04 (25 de janeiro de 2010): 543–66. http://dx.doi.org/10.1055/s-0029-1218649.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Czekelius, Constantin, e Carl Tzschucke. "Synthesis of Halogenated Carboxylic Acids and Amino Acids". Synthesis 2010, n.º 12 (junho de 2010): 2110. http://dx.doi.org/10.1055/s-0029-1218805.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Piloto, Ana M., Andrea S. C. Fonseca, Susana P. G. Costa e M. Sameiro T. Gonçalves. "Carboxylic fused furans for amino acid fluorescent labelling". Tetrahedron 62, n.º 39 (setembro de 2006): 9258–67. http://dx.doi.org/10.1016/j.tet.2006.07.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Bacci, M., R. Linari, F. Ricchelli e B. Salvato. "A new fluorescence from carboxylic and amino acids". Il Nuovo Cimento D 6, n.º 5 (novembro de 1985): 393–404. http://dx.doi.org/10.1007/bf02451898.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Li, Bao Hui. "Chiral Separation of Non-Natural Amide Amino Acid by Capillary Electrophoresis with CD Derivations as Chiral Selective Material". Advanced Materials Research 554-556 (julho de 2012): 824–27. http://dx.doi.org/10.4028/www.scientific.net/amr.554-556.824.

Texto completo da fonte
Resumo:
A capillary electrophoresis (CE) method for the separation of four kinds of enantiomers of non-natural carboxylic amino acid was built while hydroxypropyl-β- cyclodextrin (HP-β-CD) derivations as chiral selective material. Several different β-CD derivatives were tested for the chiral separation of non-natural carboxylic amino acid, and it was proved that HP-β-CD could show better chiral selectivity. The separation of enantiomers of amino acid was obtained by CE in a 50-μm i.d.×60 cm (effective length 45 cm) fused-silica capillary at 18 kV voltage, while 10 mM phosphate acted as running buffer and HP-β-CD served as selective material. The detective wavelength was set at 254 nm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Li, Bao Hui, e Bao Juan Tian. "Chiral Separation of Non-Natural Carboxylic Amino Acid by Capillary Electrophoresis with CD Derivations as Chiral Selective Material". Applied Mechanics and Materials 130-134 (outubro de 2011): 4126–29. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.4126.

Texto completo da fonte
Resumo:
A capillary electrophoresis (CE) method for the separation of four kinds of enantiomers of non-natural carboxylic amino acid was built while hydroxypropyl-β-cyclodextrin (HP-β-CD) derivations as chiral selective material. Several different β-CD derivatives were tested for the chiral separation of non-natural carboxylic amino acid, and it was proved that HP-β-CD could show better chiral selectivity. The separation of enantiomers of amino acid was obtained by CE in a 50-μm i.d.×60 cm (effective length 45 cm) fused-silica capillary at 18 kV voltage, while 10 mM phosphate acted as running buffer and HP-β-CD served as selective material. The detective wavelength was set at 254 nm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Reynard, Guillaume, Eve-Marline Joseph-Valcin e Hélène Lebel. "Protecting-group-free synthesis of hydroxyesters from amino alcohols". Chemical Communications 56, n.º 74 (2020): 10938–41. http://dx.doi.org/10.1039/d0cc03242e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Feng, Zhijing, Carla Castellarin Cudia, Luca Floreano, Alberto Morgante, Giovanni Comelli, Carlo Dri e Albano Cossaro. "A competitive amino-carboxylic hydrogen bond on a gold surface". Chemical Communications 51, n.º 26 (2015): 5739–42. http://dx.doi.org/10.1039/c4cc10271a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Fashina, Adedayo, Edith Antunes e Tebello Nyokong. "A comparative photophysicochemical study of mono substituted phthalocyanines grafted onto silica nanoparticles". Journal of Porphyrins and Phthalocyanines 18, n.º 05 (maio de 2014): 396–405. http://dx.doi.org/10.1142/s1088424614500138.

Texto completo da fonte
Resumo:
In this study, we report on the covalent linking of carboxylic acid functionalized silica nanoparticles with zinc phthalocyanine mono-substituted non-peripherally and peripherally with either a 4-amino phenoxy (1, peripheral and 2, non-peripheral) or an amino group (3 peripheral). The grafting is achieved via the formation of an amide bond between the carboxylic acid of the silica nanoparticles and the amino group of the phthalocyanine complexes. The hybrid nanoparticles retained the amorphous nature of silica nanoparticles after conjugation. A slight decrease in fluorescence and a general improvement in triplet quantum yields compared to free Pcs were observed. Triplet lifetimes for 2- SiNPs and 3- SiNPs also improved when compared to the free phthalocyanine. The changes in singlet oxygen quantum yields upon conjugation were minimal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Truong, Ngoc, Scott J. Sauer, Cyndie Seraphin-Hatcher e Don M. Coltart. "Direct carbon–carbon bond formation via reductive soft enolization: a syn-selective Mannich addition of α-iodo thioesters". Organic & Biomolecular Chemistry 14, n.º 33 (2016): 7864–68. http://dx.doi.org/10.1039/c6ob01244b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Kurz, Thomas, e Detlef Geffken. "Synthesis of 3-Amino(alkoxy)-2,4-dioxo-1,3-oxazolidine-5-carboxylates from Tartronic Esters". Zeitschrift für Naturforschung B 54, n.º 5 (1 de maio de 1999): 667–73. http://dx.doi.org/10.1515/znb-1999-0516.

Texto completo da fonte
Resumo:
The reaction of tartronic esters (1a-d) with 1,1'-carbonyl-di-(1,2,4-triazole), hydrazines or hydroxylamines produces 3-amino/3-alkoxy(aralkoxy)-2,4-dioxo-1,3-oxazolidine-5-carboxylic esters (5,6) which are structurally related to the fungicides Famoxadone (I) and Chlozolinate (II). Under suitable conditions the carboxylic ester of 6 can be converted to a carboxamide (7), carbohydrazide (8) or carbohydroxamic acid (9).
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Takagi, Hiroshi, Mika Shichiri, Miho Takemura, Miho Mohri e Shigeru Nakamori. "Saccharomyces cerevisiae Σ1278b Has Novel Genes of the N-Acetyltransferase Gene Superfamily Required for l-Proline Analogue Resistance". Journal of Bacteriology 182, n.º 15 (1 de agosto de 2000): 4249–56. http://dx.doi.org/10.1128/jb.182.15.4249-4256.2000.

Texto completo da fonte
Resumo:
ABSTRACT We discovered on the chromosome of Saccharomyces cerevisiae Σ1278b novel genes involved in l-proline analogue l-azetidine-2-carboxylic acid resistance which are not present in the standard laboratory strains. The 5.4 kb-DNA fragment was cloned from the genomic library of thel-azetidine-2-carboxylic acid-resistant mutant derived from a cross between S. cerevisiae strains S288C and Σ1278b. The nucleotide sequence of a 4.5-kb segment exhibited no identity with the sequence in the genome project involving strain S288C. Deletion analysis indicated that one open reading frame encoding a predicted protein of 229 amino acids is indispensable forl-azetidine-2-carboxylic acid resistance. The protein sequence was found to be a member of theN-acetyltransferase superfamily. Genomic Southern analysis and gene disruption showed that two copies of the novel gene with one amino acid change at position 85 required forl-azetidine-2-carboxylic acid resistance were present on chromosomes X and XIV of Σ1278b background strains. When this novelMPR1 or MPR2 gene (sigma 1278b gene forl-proline analogue resistance) was introduced into the other S. cerevisiae strains, all of the recombinants were resistant to l-azetidine-2-carboxylic acid, indicating that both MPR1 and MPR2 are expressed and have a global function in S. cerevisiae.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Rajam, Ammaiyappan, Packianathan Thomas Muthiah, Raymond John Butcher, Jerry P. Jasinski e Jan Wikaira. "Design of two series of 1:1 cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids". Acta Crystallographica Section C Structural Chemistry 74, n.º 9 (13 de agosto de 2018): 1007–19. http://dx.doi.org/10.1107/s2053229618009154.

Texto completo da fonte
Resumo:
Two series of a total of ten cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single-crystal X-ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton-accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C73, 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4-amino-5-chloro-2,6-dimethylpyrimidine–3-bromothiophene-2-carboxylic acid (1/1), 1, 4-amino-5-chloro-2,6-dimethylpyrimidine–5-chlorothiophene-2-carboxylic acid (1/1), 2, 4-amino-5-chloro-2,6-dimethylpyrimidine–2,4-dichlorobenzoic acid (1/1), 3, and 4-amino-5-chloro-2,6-dimethylpyrimidine–2-aminobenzoic acid (1/1), 4, the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H...N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion-related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H...O and O—H...N hydrogen bonds to form a large cage-like tetrameric unit with an R 4 2(20) graph-set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H...N hydrogen bonds, generating R 2 2(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4-amino-5-chloro-2,6-dimethylpyrimidine–5-methylthiophene-2-carboxylic acid (1/1), 5, 4-amino-5-chloro-2,6-dimethylpyrimidine–benzoic acid (1/1), 6, 4-amino-5-chloro-2,6-dimethylpyrimidine–2-methylbenzoic acid (1/1), 7, 4-amino-5-chloro-2,6-dimethylpyrimidine–3-methylbenzoic acid (1/1), 8, 4-amino-5-chloro-2,6-dimethylpyrimidine–4-methylbenzoic acid (1/1), 9, and 4-amino-5-chloro-2,6-dimethylpyrimidine–4-aminobenzoic acid (1/1), 10, the carboxyl group interacts with position N3 and the adjacent 4-amino group of the corresponding pyrimidine ring via O—H...N and N—H...O hydrogen bonds to generate the robust R 2 2(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H...N hydrogen-bond interactions in a linear fashion to form a chain-like arrangement. In cocrystal 1, a Br...Br halogen bond is present, in cocrystals 2 and 3, Cl...Cl halogen bonds are present, and in cocrystals 5, 6 and 7, Cl...O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Crossley, MJ, e AW Stamford. "Studies Directed Towards the Total Synthesis of Anticapsin and Related Compounds. III. A Ring-Fragmentation Route to the Anticapsin Skeleton". Australian Journal of Chemistry 47, n.º 9 (1994): 1713. http://dx.doi.org/10.1071/ch9941713.

Texto completo da fonte
Resumo:
The α-amino-5-oxo-7-oxabicyclo[4.1.0]heptane-2-propanoic acid framework of anticapsin and related compounds is generated by base-catalysed fragmentation of 2-amino-5,6-epoxy-1-hydroxybicyclo[2.2.2]octane-2-carboxylic acid derivatives in a retro-aldol-like reaction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ameen, Mohamed A. "Novel Selective 5-HT3 Receptor Ligands: Facile Generation Methods for 2-Amino- and 4-Aminopyrido[4’,3’:4,5]thieno[2,3-d]pyrimidines". Zeitschrift für Naturforschung B 61, n.º 10 (1 de outubro de 2006): 1234–38. http://dx.doi.org/10.1515/znb-2006-1008.

Texto completo da fonte
Resumo:
This work reports on the synthesis of new 2-amino- and 4-aminopyridothienopyrimidines, with a view to identify potent and selective ligands for the 5-HT3 receptor, starting from derivatives of 2-aminothiophene-3-carboxylic ester, -3-carboxamide, or 2-amino-3-cyanothiophene.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Balaban, R. S., e L. J. Mandel. "Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study". American Journal of Physiology-Renal Physiology 254, n.º 3 (1 de março de 1988): F407—F416. http://dx.doi.org/10.1152/ajprenal.1988.254.3.f407.

Texto completo da fonte
Resumo:
The effects of various short-chain fatty acids, carboxylic acids, and amino acids on NADH fluorescence and oxygen consumption (QO2) of rabbit proximal tubule suspensions were determined. The short-chain fatty acids were the most effective substrates in increasing NADH fluorescence and QO2, followed by the carboxylic acids and amino acids. All of the substrates tested that increased NADH fluorescence proportionally increased QO2. This implies that the primary effect of these substrates was to increase QO2 by increasing the delivery of reducing equivalents to NAD and not by stimulating ATP hydrolysis directly. The relative affinity of several substrates to increase NADH fluorescence was also determined. The short-chain fatty acids had the highest affinity (10 microM range) followed by the carboxylic acids (100 microM range). These data demonstrate that the metabolic rate and NADH redox state of the renal cortical cell is very sensitive to the type of metabolic substrate available.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Michalke, R., K. Taraz e H. Budzikiewiez. "Azoverdin -an Isopyoverdin". Zeitschrift für Naturforschung C 51, n.º 11-12 (1 de dezembro de 1996): 772–80. http://dx.doi.org/10.1515/znc-1996-11-1202.

Texto completo da fonte
Resumo:
For azoverdin, the siderophore of Azomonas macrocytogenes ATCC 12334, a pyoverdintype structure has been suggested. We now present evidence that it is actually an isopyoverdin. Also the sequence of the peptide chain has to be revised. Azoverdin comprises, therefore, the chromophore (3S)-5-amino-1,2-dihydro-8,9-dihydroxy-3H -pyrimido[1,2a]quinoline- 3-carboxylic acid whose amino group is bound to a succinamide residue while the carboxyl group is attached to the N -terminus of L-Hse-[2-(R-1-amino-3-hydroxypropyl)-3,4,5,6- tetrahydropyrimidine-65-carboxylic acid]-N5-acetyl-N5,-hydroxy-ᴅ-Orn-ᴅ-Ser-N5-acetyl-N5- hydroxy-ʟ-Orn. In addition to azoverdin congeners with succinic acid (azoverdin A ) and with ʟ-Glu (azoverdin G ), resp., instead of the succinamide side chain could be isolated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Pappas, Charalampos G., Andreas G. Tzakos e Ioannis P. Gerothanassis. "On the Hydration State of Amino Acids and Their Derivatives at Different Ionization States: A Comparative Multinuclear NMR and Crystallographic Investigation". Journal of Amino Acids 2012 (14 de maio de 2012): 1–11. http://dx.doi.org/10.1155/2012/565404.

Texto completo da fonte
Resumo:
2D, 13C, 14N, and 17O NMR and crystallographic data from the literature were critically evaluated in order to provide a coherent hydration model of amino acids and selected derivatives at different ionization states. 17O shielding variations, longitudinal relaxation times (T1) of 2D and 13C and line widths (Δν1/2) of 14N and 17O, may be interpreted with the hypothesis that the cationic form of amino acids is more hydrated by 1 to 3 molecules of water than the zwitterionic form. Similar behaviour was also observed for N-acetylated derivatives of amino acids. An exhaustive search in crystal structure databases demonstrates the importance of six-membered hydrogen-bonded conjugated rings of both oxygens of the α-carboxylate group with a molecule of water in the vicinity. This type of hydrogen bond mode is absent in the case of the carboxylic groups. Moreover, a considerable number of structures was identified with the propensity to form intramolecular hydrogen bond both in the carboxylic acid (NH⋯O=C) and in the carboxylate (−) ionization state. In the presence of bound molecules of water this interaction is significantly reduced in the case of the carboxylate group whereas it is statistically negligible in the carboxylic group.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Brown, RFC, KJ Coulston, FW Eastwood e CJ Jurss. "Formation of 4-Nitro-2-phenylquinoline on Attempted Diazotization of 3-Amino-2-phenylquinoline-4-carboxylic Acid". Australian Journal of Chemistry 47, n.º 3 (1994): 567. http://dx.doi.org/10.1071/ch9940567.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Radi, Smaail, Chahrazad El Abiad, André P. Carvalho, Sérgio M. Santos, M. Amparo F. Faustino, M. Graça P. M. S. Neves e Nuno M. M. Moura. "An efficient hybrid adsorbent based on silica-supported amino penta-carboxylic acid for water purification". Journal of Materials Chemistry A 6, n.º 27 (2018): 13096–109. http://dx.doi.org/10.1039/c8ta02560f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Umansky, A. B., e A. M. Klyushnikov. "Nickel extraction from hydroxide pulps over amino carboxylic cationites". Izvestiya Vuzov. Tsvetnaya Metallurgiya (Proceedings of Higher Schools. Nonferrous Metallurgy), n.º 1 (24 de fevereiro de 2015): 32. http://dx.doi.org/10.17073/0021-3438-2013-1-32-35.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Zia-ur-Rehman, Muhammad, Mark R. J. Elsegood, Nosheen Akbar e Rahman Shah Zaib Saleem. "5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid". Acta Crystallographica Section E Structure Reports Online 64, n.º 7 (21 de junho de 2008): o1312—o1313. http://dx.doi.org/10.1107/s1600536808018394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Blagojevic, V., S. Petrie e D. K. Bohme. "Gas-phase syntheses for interstellar carboxylic and amino acids". Monthly Notices of the Royal Astronomical Society 339, n.º 1 (11 de fevereiro de 2003): L7—L11. http://dx.doi.org/10.1046/j.1365-8711.2003.06351.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Avenoza, Alberto, Carlos Cativiela, Miguel A. Fernández-Recio e Jesús M. Peregrina. "Synthesis of 1-amino-4-hydroxycyclohexane-1-carboxylic acids". Journal of the Chemical Society, Perkin Transactions 1, n.º 22 (1999): 3375–79. http://dx.doi.org/10.1039/a904132j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Xuan, Richeng, Weixiao Hu, Zhongyu Yang e Rirong Xuan. "DL-2-Amino-2-thiazoline-4-carboxylic acid trihydrate". Acta Crystallographica Section E Structure Reports Online 59, n.º 11 (15 de outubro de 2003): o1707—o1709. http://dx.doi.org/10.1107/s1600536803022360.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Keita, Massaba, Rocco De Bona, Mickael Dos Santos, Olivier Lequin, Sandrine Ongeri, Thierry Milcent e Benoit Crousse. "Access to novel amino trifluoromethyl cyclopropane carboxylic acid derivatives". Tetrahedron 69, n.º 15 (abril de 2013): 3308–15. http://dx.doi.org/10.1016/j.tet.2013.02.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Wu, Ye, e William Quintana. "Coupling of Amino Carboranes to Carboxylic Acid Containing Substrates". Inorganic Chemistry 38, n.º 9 (maio de 1999): 2025–29. http://dx.doi.org/10.1021/ic981223h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Li, Gong-Chun, Li-Ye Wang, Ran Zhu e Feng-Ling Yang. "1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid". Acta Crystallographica Section E Structure Reports Online 64, n.º 12 (8 de novembro de 2008): o2264. http://dx.doi.org/10.1107/s1600536808035538.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Stankovičová, Henrieta, Margita Lácová, Anton Gáplovský, Jarmila Chovancová e Nad'a Prónayová. "Reaction of 3-formylchromones with aromatic amino carboxylic acids". Tetrahedron 57, n.º 16 (abril de 2001): 3455–64. http://dx.doi.org/10.1016/s0040-4020(01)00219-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Yamamoto, Yoshinori, e Toshiaki Furuta. "Triethylgallium Mediated Lactamization of α,ω-Amino Carboxylic Acids". Chemistry Letters 18, n.º 5 (maio de 1989): 797–800. http://dx.doi.org/10.1246/cl.1989.797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Stoykova, Svetlana A., Anthony Linden e Heinz Heimgartner. "Highly Constrained Linear Oligopeptides Containing Heterocyclicα-Amino Carboxylic Acids". Helvetica Chimica Acta 96, n.º 9 (setembro de 2013): 1714–32. http://dx.doi.org/10.1002/hlca.201300062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Liu, Jiarong, Ling Liu, Hui Rong e Xiuhui Zhang. "The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups". Physical Chemistry Chemical Physics 23, n.º 17 (2021): 10184–95. http://dx.doi.org/10.1039/d0cp06472f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia