Literatura científica selecionada sobre o tema "Anticancer drug treatment"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Anticancer drug treatment".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Anticancer drug treatment"
Alven, Sibusiso, e Blessing Atim Aderibigbe. "The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment". Pharmaceutics 12, n.º 12 (15 de dezembro de 2020): 1212. http://dx.doi.org/10.3390/pharmaceutics12121212.
Texto completo da fonteSavinkova, A. V., E. M. Zhidkova, L. R. Tilova, M. D. Lavrova, E. S. Lylova, K. A. Kuzin, A. Yu Portyannikova et al. "VARIANTS AND PERSPECTIVES OF DRUG REPURPOSING FOR CANCER TREATMENT". Siberian journal of oncology 17, n.º 3 (4 de julho de 2018): 77–87. http://dx.doi.org/10.21294/1814-4861-2018-17-3-77-87.
Texto completo da fonteMahmud, Kazi Mustafa, Mahruba Sultana Niloy, Md Salman Shakil e Md Asiful Islam. "Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment". Pharmaceutics 13, n.º 8 (19 de agosto de 2021): 1295. http://dx.doi.org/10.3390/pharmaceutics13081295.
Texto completo da fonteLee, Jun H., e Anjan Nan. "Combination Drug Delivery Approaches in Metastatic Breast Cancer". Journal of Drug Delivery 2012 (26 de abril de 2012): 1–17. http://dx.doi.org/10.1155/2012/915375.
Texto completo da fonteP. George, Christy, Shridhar H. Thorat, Parth S. Shaligram, Suresha P. R. e Rajesh G. Gonnade. "Drug–drug cocrystals of anticancer drugs erlotinib–furosemide and gefitinib–mefenamic acid for alternative multi-drug treatment". CrystEngComm 22, n.º 37 (2020): 6137–51. http://dx.doi.org/10.1039/d0ce00353k.
Texto completo da fonteMoradi-Marjaneh, Reyhaneh, Majid Khazaei, Sima Seifi, Seyed Mahdi Hassanian, Gordon A. Ferns e Amir Avan. "Pharmacogenetics of Anticancer Drug Sensitivity and Toxicity in Colorectal Cancer". Current Pharmaceutical Design 24, n.º 23 (24 de outubro de 2018): 2710–18. http://dx.doi.org/10.2174/1381612824666180727144535.
Texto completo da fonteOstroumova, O. D., D. A. Sychev, A. I. Kochetkov, T. M. Ostroumova, M. I. Kulikova e V. A. De. "Anti-cancer agents and drug-induced hypertension". Medical alphabet, n.º 17 (7 de setembro de 2022): 30–41. http://dx.doi.org/10.33667/2078-5631-2022-17-30-41.
Texto completo da fonteLi, Fan, Xinqing Fu, Qingqing Huo e Wantao Chen. "Research Progress on the Nano-Delivery Systems of Antitumor Drugs". Nano LIFE 10, n.º 01n02 (março de 2020): 2040006. http://dx.doi.org/10.1142/s1793984420400061.
Texto completo da fonteFumagalli, Gaia, Cristina Marucci, Michael S. Christodoulou, Barbara Stella, Franco Dosio e Daniele Passarella. "Self-assembly drug conjugates for anticancer treatment". Drug Discovery Today 21, n.º 8 (agosto de 2016): 1321–29. http://dx.doi.org/10.1016/j.drudis.2016.06.018.
Texto completo da fonteKim, Tae-Hyun, Gyeong Jin Lee, Joo-Hee Kang, Hyoung-Jun Kim, Tae-il Kim e Jae-Min Oh. "Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment". BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/193401.
Texto completo da fonteTeses / dissertações sobre o assunto "Anticancer drug treatment"
Fumagalli, G. "DRUG-CONJUGATES FOR SELF-ASSEMBLED NANOPARTICLES IN ANTICANCER TREATMENT". Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/542496.
Texto completo da fonteGolovko, Olga. "The screening for novel proteasome inhibitors as a treatment of cancer using IncuCyte FLR and fluorometric microculture cytotoxicity assay". Thesis, Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160700.
Texto completo da fonteBrazzale, Chiara. "Gold nanoparticle surface tuning for multimodal treatment of cancer". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424441.
Texto completo da fonteLo scopo del presente progetto di dottorato è stato quello di produrre e caratterizzare dal punto di vista chimico-fisico e biologico un nanocarrier per il direzionamento selettivo di farmaci antitumorali a tumori sovraesprimenti il recettore per l’acido folico. Sono stati compiuti studi approfonditi per verificare come la densità dell’agente di targeting influenzasse l’efficienza d’internalizzazione del sistema. Inoltre studi di trafficking intracellulare hanno verificato come particelle d’oro direzionate con agente di targeting Folato-PEG vengano internalizzate mediante meccanismo clatrina-indipendente. Si è inoltre indagata la capacità di nanoparticelle d’oro come sensibilizzanti alla terapia sonodinamica al fine di poter combinare un trattamento farmacologico ad un approccio fisico. Un ulteriore sviluppo del progetto ha riguardato la modifica di nanoparticelle d’oro direzionate con Folato-PEG con una seconda componente pH responsiva in grado di passare da una conformazione estesa a pH fisiologico di 7.4 ad una forma idrofobica globulare a pH 6.5, condizione tipica del tessuto tumorale. In questo modo é possibile modulare il mascheramento/esposizione dell’agente di targeting e ridurre il bio-riconoscimento aspecifico a favore della sito-specificità. Tra gli sviluppi futuri del progetto, vi è la decorazione di nanoparticelle d’oro con un polimero dotato di gruppi idrazinici coniugati a Doxorubicina mediante legame idrazonico. In virtù delle proprietà del legame idrazonico, la Doxorubicina sarà rilasciata esclusivamente nei comparti endosomiali e lisosomiali, in seguito all'uptake cellulare mediato dal recettore FR per l’acido folico.
Pardella, Elisa. "Therapy-induced stromal senescence promotes prostate cancer progression and aggressiveness". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1128061.
Texto completo da fonteMarwah, Mandeep Kaur. "Development of a novel deformable liposomal formulation for the dermal drug delivery of anticancer agents in the treatment of non-melanoma skin cancers". Thesis, Aston University, 2017. http://publications.aston.ac.uk/37493/.
Texto completo da fonteShaw, Yeng-Jeng. "Small molecule-based drug design of anticancer agents that target protein kinase B / AKT, Bcl-xL and DNA methyltransferases for the treatment of prostate cancer". Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1128693982.
Texto completo da fonteYaacoub, Katherine. "c-FLIP as a potent anticancer target : Enhancement of cancer cell apoptosis by compounds identified through virtual screening". Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1B011/document.
Texto completo da fonteFLIP (FLICE Inhibitory Protein) is an anti-apoptotic protein which shares sequencesimilarity with the pro-apoptotic protein caspase-8. FLIP competes with caspase-8 for binding to the adaptor protein FADD (Fas-associated death domain), thus it inhibits caspase-8 activation, thereby blocking apoptosis. During the development of molecules interfering with anti-apoptotic proteins, searching for inhibitors of FLIP protein which is overexpressed in a very large number of cancers, has failed. This is partly due to the fact that little FLIP structural information is available at present. TRAIL is a member of TNFα superfamily. It has been described to activate the apoptotic signaling pathways. TRAIL showed great interest in anti-cancer therapy, due to its ability to induce tumor cell death without any effect on normal cells. However, the efficacy of TRAIL is limited by several molecular mechanisms. One of these mechanisms is the overexpression of FLIP which is able to compromise the therapeutic use of TRAIL. The main goal of this project is to develop novel inhibitory molecules able to interfere with FLIP in tumor cells without any effect on the homologous protein caspase 8. After the construction of FLIP and caspase-8 proteins on the basis of the crystallographic structure of the viral FLIP and FADD respectively, the first docking experiments using a chemical library of the National Cancer Institute NCI have been carried out. The most interesting molecules, being selective for FLIP versus caspase 8, were selected and tested on lung cancer cell lines that overexpress FLIP protein. Co-administration of FLIP inhibitors with TRAIL was performed to verify the restoration of the apoptotic pathway in cancer cells. A molecular test of "Pull down assay" was done in order to confirm the inhibition of the FLIP/FADD interaction. Finally, the evaluation of caspases activity was carried out to confirm the reactivation of the apoptotic machinery after TRAIL/FLIP-inhibitors combination. In conclusion, the combination of TRAIL with FLIP inhibitors resulted in apoptosis restoration in resistant tumor cells. These newly identified compounds may serve later as potential elements in cancer treatment field
Serafin, Antonio Mendes. "Cell biological responses of prostatic tumour cell lines to irradiation and anticancer drugs". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53321.
Texto completo da fonteENGLISH ABSTRACT: The "classic" prostate cell lines, DU145, PC-3 and LNCaP, have served as a valuable cell biological model for research into prostate cancer. However, their relevance may be limited because they derive from metastatic, and not from primary normal and tumour epithelium. The cell lines (1532T, 1535T, 1542T, 1542N and BPH-l) have been derived from primary benign and malignant human tumour prostate epithelium and may be more representative. Using these cell lines I have examined the role of basic cell damage responses (repair, checkpoint activation, apoptosis and associated signalling proteins, and the influence of androgen status) in cell inactivation, and its relevance to treatment. Numerous studies have suggested that loss of p53 function leads to resistance to chemotherapeutic agents and irradiation. It is shown here that the p53-inactive cell lines are, in fact, the most sensitive to chemotherapeutic agents such as etoposide, vinblastine and estramustine, whilst the p53 wild-type cell line, LNCaP, is the most radiosensitive. Notwithstanding the effects of p53 degradation by the HPV -16 E6 viral protein, the results on chemosensitivity raises the possibility that different chemotherapeutic agents may have different p53-dependent effects in different tumour cells. Androgen deprivation is demonstrated to sensitise prostate cancer cells to chemotherapeutic agents and it is shown that the hormone independent cell lines are the most chemosensitive. The LNCaP cell line displayed an increased resistance to apoptosis induced by etoposide and gamma irradiation, suggesting that androgens are capable of protection against both these DNA damaging agents. The major factors determining radiosensitivity in human tumour cell lines are known to be DNA double-strand break (dsb) induction and repair. In the prostate cell lines I find that cellular radiosensitivity correlates with the number of DNA double-strand breaks measured within 2 hours of irradiation, and that the more radioresistant cell lines show better repair competence. Conclusions as to the influence of androgen dependence on radiosensitivity and repair are not possible at this stage since only the LNCaP cell line was androgen sensitive. The fact that the 2 hour repair period can separate radiosensitive from radioresistant cells in 2 groups of human tumour cell lines highlights the role of non-homologous end-joining repair. This has implications for therapy, and is consistent with the clinical observation that prostate tumours can be successfully controlled by low dose rate-brachytherapy. To evaluate the role of apoptosis, cells were exposed to TD50 concentrations of chemotherapeutic drugs, and 60Co y-irradiation. Apoptosis was found to be low, overall, and ranged from 0.1% - 12.1%,3.0% - 6.0% and 0.1% - 8.5% for etoposide, estramustine and vinblastine, respectively. The percentage of cells undergoing druginduced apoptosis was, on average, higher in the tumour cell lines than in the normal cell lines. Gamma irradiation-induced apoptosis levels ranged from 1.3% - 7%. The LNCaP cell line yielded the lowest percentage of apoptotic cells after exposure. The l532T cell line yielded the highest percentage of apoptotic cells after exposure. Apoptotic propensity did not rank the cell lines according to their radiosensitivity. Immunoblotting demonstrated that the apoptosis-associated proteins, bax and bcl-2, are expressed at a basal level in all the cell lines tested, but no increase was detected after exposure to TD50 doses of etoposide, vinblastine and estramustine. The ratio of bax and bcl-2 also was not altered by DNA damage. No evidence was found that a correlation may exist between reproductive cell death and the expression of genes which control apoptosis. My results show that apoptosis is not a major mechanism of drug- or radiation-induced cell death in prostate cell lines. In conclusion, loss of p53 function and loss of androgen dependence was not found to be correlated with resistance of tumours to chemotherapeutic drugs. Cellular radiosensitivity was found to be correlated with the number of DNA double-strand breaks remaining after 2 hours of repair. The more radioresistant cell lines showed better repair competence. Apoptosis and genes affecting apoptosis, such as p53 and members of the bcl-2 family, do not seem to contribute significantly to the sensitivity of prostate cancer cells to anticancer drugs and irradiation.
AFRIKAANSE OPSOMMING: Die klassieke prostaat sellyne, DU145, PC-3 en LNCaP, het 'n waardevolle bydrae gemaak in die sel biologiese model in prostaat kanker. Die toepaslikheid daarvan mag egter beperk wees, aangesien hierdie sellyne afkomstig is van metastatiese, en nie van primêr normale en tumor epiteel nie. Die sellyne 1532T, 1535T, 1542T, 1542N en BPH-I is afkomstig van primêre benigne en maligne menslike prostaat tumor epiteel en mag moontlik meer verteenwoordigend wees. Deur van hierdie sellyne gebruik te maak, is die rolondersoek van die reaksie op basiese selskade (d.w.s. herstel, beheerpunt aktivering, apoptose en verwante sein proteïene, en die invloed van androgeen status) tydens die proses van sel inaktivering, asook die toepaslikheid ten opsigte van behandeling. Volgens verskeie studies lei die verlies aan p53 funksie tot weerstandigheid teen chemoterapeutiese middels en bestraling. Die resultate van hierdie studie toon dat die p53-onaktiewe sellyne egter die sensitiefste is vir chemoterapeutiese middels, soos etoposied, vinblastien en estramustien, terwyl die p53 natuurlike-tipe sellyn, LNCaP, die meeste radiosensitief is. Ten spyte van die invloed van p53 afbraak deur die HPV -16 E6 virale proteïen, dui die resultate van chemosensitiwiteit op die moontlikheid dat verskillende chemoterapeutiese middels verskillende p53-afhanklike effekte op verskillende tumorselle mag hê. Dit is bewys dat onttrekking van androgeen prostaat kankerselle sensitiseer teen chemoterapeutiese middels en dat hormoon-onafhanklike sellyne die hoogste chemosensitiwiteit vertoon. Die LNCaP sellyn vertoon 'n verhoogde weerstandigheid teen apoptose wat deur etoposied en y-bestraling geïnduseer is, wat 'n aanduiding is dat androgene beskerming kan bied teen beide hierdie DNA beskadigingsfaktore. Die belangrikste faktore wat die radiosensitiwiteit in menslike tumorselle bepaal, IS bekend dat dit die dubbelbande van DNA verbreek en herstel. Hierdie studie het aangetoon dat in prostaat sellyne die sellulêre radiosensitiwiteit korreleer met die aantal DNA dubbelband verbrekings binne 2 uur na bestraling, en dat die meer radioweerstandige sellyne beter herstelvermoë vertoon. Gevolgtrekkings oor die invloed van androgeen se afhanklikheid van radiosensitiwiteit en herstel kan egter nie op hierdie stadium gemaak word nie, aangesien slegs die LNCaP sellyn androgeenafhanklik was. Die feit dat die 2 uur herstelperiode 'n skeiding kan maak tussen radiosensitiewe en radioweerstandige selle in twee groepe menslike tumor sellyne, onderstreep die rol van herstel van nie-homoloë endverbindings. Dit hou implikasies in vir terapie, en stem ooreen met die kliniese waarnemings dat prostaat tumore suksesvol gekontroleer kan word deur lae intensiteit dosis bragiterapie. Ten einde die rol van apoptose te ondersoek, is selle blootgestel aan TD50 konsentrasies chemoterapeutiese middels, asook 60Co y-bestraling. Apoptose was oor die algemeen laag, en het gestrek van 0.1% tot 12.1%,3.0% tot 6.0% en 0.1% tot 8.5% vir etoposied, estramustien en vinblastien onderskeidelik. Die persentasie selle wat middel geïnduseerde apoptose ondergaan het, was gemiddeld hoër in tumor sellyne as in normale sellyne. Die waardes van apoptose geïnduseer deur y-bestraling het gewissel van 1.3% tot 7.0%. Die LNCaP sellyn het die laagste persentasie apoptotiese selle na bestraling gelewer, terwyl die 1532 r sellyn die hoogste persentasie gelewer het. Die volgorde van die radiosensitiwiteit van die sellyne was nie waarneembaar in hulle geneigdheid tot apoptose nie. Immunoblots het aangetoon dat die apoptose-geassosieerde proteïene, bax en bcl-2, uitgeskei word teen 'n basisvlak in al die sellyne wat getoets is, maar dat geen verhoogde uitskeiding waarneembaar was na blootstelling aan TD50 dosisse etoposied, vinblastien en estramustien nie. Die verhouding van bax en bcl-2 is ook nie beïnvloed deur DNA beskadiging nie. Dit blyk daarom dus onwaarskynlik dat daar 'n korrelasie bestaan tussen reproduktiewe seldood en die uitskeiding van gene wat apoptose beheer. Die resultate dui daarop dat apoptose me 'n belangrike meganisme vir middel- of bestralingsgeïnduseerde seldood in prostaat sellyne is nie.
Booker, Victoria. "Investigating the occurrence and fate of anticancer drugs in sewage treatment works and the wider aquatic environment". Thesis, Lancaster University, 2015. http://eprints.lancs.ac.uk/82556/.
Texto completo da fonteKotadia, Nayna. "A Study on the Protein Interaction with Different Platinum Compounds". TopSCHOLAR®, 2008. http://digitalcommons.wku.edu/theses/8.
Texto completo da fonteLivros sobre o assunto "Anticancer drug treatment"
Link, Wolfgang. Principles of Cancer Treatment and Anticancer Drug Development. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18722-4.
Texto completo da fonteManuel, Hidalgo. Principles of anticancer drug development. New York: Springer, 2011.
Encontre o texto completo da fonteParfenov, E. A. Biometals and ligands for anticancer drug design. Commack, N.Y: Nova Science Publishers, 1998.
Encontre o texto completo da fonte1946-, Lippert Bernhard, ed. Cisplatin: Chemistry and biochemistry of a leading anticancer drug. Zürich: Verlag Helvetica Chimica Acta, 1999.
Encontre o texto completo da fonteAvendaño, Carmen. Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier, 2008.
Encontre o texto completo da fonteJ, Houghton Peter, e Houghton Janet A, eds. Preclinical and clinical modulation of anticancer drugs. Boca Raton: CRC Press, 1993.
Encontre o texto completo da fonte1945-, Ojima Iwao, Vite Gregory D, Altmann Karl-Heinz, American Chemical Society. Division of Organic Chemistry, American Chemical Society. Division of Medicinal Chemistry e American Chemical Society Meeting, eds. Anticancer agents: Frontiers in cancer chemotherapy. Washington, DC: American Chemical Society, 2001.
Encontre o texto completo da fonteCho, William C. S. Evidence-based Anticancer Materia Medica. Dordrecht: Springer Science+Business Media B.V., 2011.
Encontre o texto completo da fonteLipp, H. P. Prevention and management of anticancer drug toxicity: The significance of clinical pharmacokinetics. Jena: Univ.-Verlag, 1995.
Encontre o texto completo da fonteSnapka, Robert M. The SV40 replicon model for analysis of anticancer drugs. Austin, TX: R.G. Landes, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Anticancer drug treatment"
Paalzow, L. K. "Therapeutical Drug Monitoring of Anticancer Drugs". In Drug Delivery in Cancer Treatment III, 85–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75938-3_7.
Texto completo da fontePaalzow, Lennart K. "Pharmacokinetic Aspects of Drug-Drug and Drug-Plastic Interactions with Anticancer Drugs". In Drug Delivery in Cancer Treatment II, 15–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74709-0_3.
Texto completo da fonteWeekes, Colin D., e Manuel Hidalgo. "Targeted Therapeutics in Cancer Treatment". In Principles of Anticancer Drug Development, 403–61. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7358-0_15.
Texto completo da fontePowis, G. "Liver Disease and Anticancer Drug Treatment". In Drugs and the Liver: High Risk Patients and Transplantation, 99–104. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1994-8_16.
Texto completo da fonteCarden, Craig P., Hendrik-Tobias Arkenau e Johann S. de Bono. "Optimising the Development of Antibodies as Treatment for Cancer". In Principles of Anticancer Drug Development, 535–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7358-0_19.
Texto completo da fonteLink, Wolfgang. "Cancer Drug Resistance". In Principles of Cancer Treatment and Anticancer Drug Development, 77–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18722-4_3.
Texto completo da fonteBahnson, Robert R., Alakananda Basu e John S. Lazo. "The role of metallothioneins in anticancer drug resistance". In Cancer Treatment and Research, 251–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3872-1_12.
Texto completo da fonteFeng, Tao, e Yanli Zhao. "Clinical Anticancer Drugs for Cancer Treatment". In Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy, 7–13. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3299-8_2.
Texto completo da fonteLink, Wolfgang. "Drug Discovery and Development". In Principles of Cancer Treatment and Anticancer Drug Development, 87–136. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18722-4_4.
Texto completo da fonteLink, Wolfgang. "Economic and Social Implications of Modern Drug Discovery". In Principles of Cancer Treatment and Anticancer Drug Development, 137–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18722-4_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Anticancer drug treatment"
Ma, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin e Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening". In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Texto completo da fonte"PAMAM Dendrimers as anti-HER2 Positive Breast Cancer Treatment". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0176.
Texto completo da fonteFernandez, Eric, Jianxiong Pang, Chris Snell, Cathy Derow, Frances Brightman, Christophe Chassagnole e Robert Jackson. "Abstract 5147: drugCARD: a database of anticancer treatment regimens and drug combinations." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5147.
Texto completo da fonteZhang, Wujie, Kyle Gilstrap, Laying Wu, Melissa A. Moss, Qian Wang, Xiongbin Lu e Xiaoming He. "Controlled Release and Intracellular Delivery of Small Molecules Using Thermally Responsive Pluronic F127-Chitosan Nanocapsules". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53517.
Texto completo da fonteNikkhah, Mehdi, Jeannine S. Strobl e Masoud Agah. "Study the Effect of Anticancer Drugs on Human Breast Cancer Cells Using Three Dimensional Silicon Microstructures". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66680.
Texto completo da fonteSarker, Sunandita, Yiannis S. Chatzizisis, Srivatsan Kidambi e Benjamin S. Terry. "Design and Development of a Novel Drug Delivery Catheter for Atherosclerosis". In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6869.
Texto completo da fonteWu, Jie, Shixiong Xu, Quan Long, Michael W. Collins, Carola S. Koenig, Gaiping Zhao, Yuping Jiang e Anwar R. Padhani. "Simulation of Blood Perfusion in Tumour Microvasculature". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176335.
Texto completo da fonteTaketani, Akinori, Mika Ishigaki, Bibin Bintan Andriana e Hidetoshi Sato. "Raman endoscopy for real time monitoring of anticancer drug treatment in colorectal tumors of live model mice". In SPIE BiOS, editado por Gerard L. Coté. SPIE, 2014. http://dx.doi.org/10.1117/12.2038939.
Texto completo da fonteMarković, Maja. "Controlled release of caffeine from three dimensional networks based on poly(metacrylic acid) and casein - analysis of the effect of caffeine concentration on release process". In 35th International Congress on Process Industry. SMEITS, 2022. http://dx.doi.org/10.24094/ptk.022.019.
Texto completo da fonteNalabothula, Narasimharao, Douglas D. Ross e France Carrier. "Abstract 5498: Prognostic tools to predict the efficacy of anticancer drug treatment targeting Chromatin DNA or enzymes acting on DNA". In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5498.
Texto completo da fonteRelatórios de organizações sobre o assunto "Anticancer drug treatment"
Venedicto, Melissa, e Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, outubro de 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Texto completo da fonteFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2007. http://dx.doi.org/10.21236/ada486569.
Texto completo da fonteFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2006. http://dx.doi.org/10.21236/ada481424.
Texto completo da fonte