Literatura científica selecionada sobre o tema "Atmospheric methane"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Atmospheric methane".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Atmospheric methane"

1

Arora, Vivek K., Joe R. Melton, and David Plummer. "An assessment of natural methane fluxes simulated by the CLASS-CTEM model." Biogeosciences 15, no. 15 (2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.

Texto completo da fonte
Resumo:
Abstract. Natural methane emissions from wetlands and fire, and soil uptake of methane, simulated using the Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem (CLASS-CTEM) modelling framework, over the historical 1850–2008 period, are assessed by using a one-box model of atmospheric methane burden. This one-box model also requires anthropogenic emissions and the methane sink in the atmosphere to simulate the historical evolution of global methane burden. For this purpose, global anthropogenic methane emissions for the period 1850–2008 were reconstructed based on the harmonized rep
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jensen, Sigmund, Anders Priemé, and Lars Bakken. "Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms." Applied and Environmental Microbiology 64, no. 3 (1998): 1143–46. http://dx.doi.org/10.1128/aem.64.3.1143-1146.1998.

Texto completo da fonte
Resumo:
ABSTRACT Methanotrophs in enrichment cultures grew and sustained atmospheric methane oxidation when supplied with methanol. If they were not supplied with methanol or formate, their atmospheric methane oxidation came to a halt, but it was restored within hours in response to methanol or formate. Indigenous forest soil methanotrophs were also dependent on a supply of methanol upon reduced methane access but only when exposed to a methane-free atmosphere. Their immediate response to each methanol addition, however, was to shut down the oxidation of atmospheric methane and to reactivate atmospher
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Stevens, C. M. "Atmospheric methane." Chemical Geology 71, no. 1-3 (1988): 11–21. http://dx.doi.org/10.1016/0009-2541(88)90102-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gorham, Katrine A., Sam Abernethy, Tyler R. Jones, et al. "Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol." Atmospheric Chemistry and Physics 24, no. 9 (2024): 5659–70. http://dx.doi.org/10.5194/acp-24-5659-2024.

Texto completo da fonte
Resumo:
Abstract. The escalating climate crisis requires rapid action to reduce the concentrations of atmospheric greenhouse gases and lower global surface temperatures. Methane will play a critical role in near-term warming due to its high radiative forcing and short atmospheric lifetime. Methane emissions have accelerated in recent years, and there is significant risk and uncertainty associated with the future growth in natural emissions. The largest natural sink of methane occurs through oxidation reactions with atmospheric hydroxyl and chlorine radicals. Enhanced atmospheric oxidation could be a p
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Catling, D. C., M. W. Claire, and K. J. Zahnle. "Anaerobic methanotrophy and the rise of atmospheric oxygen." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1856 (2007): 1867–88. http://dx.doi.org/10.1098/rsta.2007.2047.

Texto completo da fonte
Resumo:
In modern marine sediments, the anoxic decomposition of organic matter generates a significant flux of methane that is oxidized microbially with sulphate under the seafloor and never reaches the atmosphere. In contrast, prior to ca 2.4 Gyr ago, the ocean had little sulphate to support anaerobic oxidation of methane (AOM) and the ocean should have been an important methane source. As atmospheric O 2 and seawater sulphate levels rose on the early Earth, AOM would have increasingly throttled the release of methane. We use a biogeochemical model to simulate the response of early atmospheric O 2 an
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Buzan, E. M., C. A. Beale, C. D. Boone, and P. F. Bernath. "Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer." Atmospheric Measurement Techniques Discussions 8, no. 10 (2015): 11171–207. http://dx.doi.org/10.5194/amtd-8-11171-2015.

Texto completo da fonte
Resumo:
Abstract. This paper presents an analysis of observations of methane and its two major isotopologues, CH3D and 13CH4 from the Atmospheric Chemistry Experiment (ACE) satellite between 2004 and 2013. Additionally, atmospheric methane chemistry is modeled using the Whole Atmospheric Community Climate Model (WACCM). ACE retrievals of methane extend from 6 km for all isotopologues to 75 km for 12CH4, 35 km for CH3D, and 50 km for 13CH4. While total methane concentrations retrieved from ACE agree well with the model, values of δD–CH4 and δ13C–CH4 show a bias toward higher δ compared to the model and
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Duda, Adam. "The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings." Energies 17, no. 1 (2023): 173. http://dx.doi.org/10.3390/en17010173.

Texto completo da fonte
Resumo:
Increased effectiveness of methane drainage from sealed post-mining goaves in hard coal mines contributes to reduced methane emission from goaves into the mine ventilation system. This paper focuses on issues concerning the assessment of the additional amount of methane released from the goaf into mine workings during periods of atmospheric pressure drops, which can be captured with a methane drainage system. Thanks to the solutions presented in the paper, it is possible to control the efficiency of the goaf drainage system, which in turn leads to the reduction of methane emission from the min
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Jin, and Qinghua Peter He. "Methane Removal from Air: Challenges and Opportunities." Methane 2, no. 4 (2023): 404–14. http://dx.doi.org/10.3390/methane2040027.

Texto completo da fonte
Resumo:
Driven by increasing greenhouse gas (GHG) concentrations in the atmosphere, extreme weather events have become more frequent and their impacts on human lives have become more severe. Therefore, the need for short-term GHG mitigations is urgent. Recently, methane has been recognized as an important mitigation target due to its high global warming potential (GWP). However, methane’s low concentration in the atmosphere and stable molecular structure make its removal from the air highly challenging. This review first discusses the fundamental aspects of the challenges in atmospheric methane remova
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bussmann, Ingeborg, Eric P. Achterberg, Holger Brix, et al. "Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea." Biogeosciences 21, no. 16 (2024): 3819–38. http://dx.doi.org/10.5194/bg-21-3819-2024.

Texto completo da fonte
Resumo:
Abstract. Quantification of the diffusive methane fluxes between the coastal ocean and atmosphere is important to constrain the atmospheric methane budget. The determination of the fluxes in coastal waters is characterized by a high level of uncertainty. To improve the accuracy of the estimation of coastal methane fluxes, high temporal and spatial sampling frequencies of dissolved methane in seawater are required, as well as the quantification of atmospheric methane concentrations, wind speed and wind direction above the ocean. In most cases, these atmospheric data are obtained from land-based
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Meng, L., R. Paudel, P. G. M. Hess, and N. M. Mahowald. "Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations." Biogeosciences 12, no. 13 (2015): 4029–49. http://dx.doi.org/10.5194/bg-12-4029-2015.

Texto completo da fonte
Resumo:
Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latit
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Atmospheric methane"

1

Tice, Dane Steven. "Ground-based near-infrared remote sounding of ice giant clouds and methane." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4f09f270-a25c-4d36-96d3-13070a594eaa.

Texto completo da fonte
Resumo:
The ice giants, Uranus and Neptune, are the two outermost planets in our solar system. With only one satellite flyby each in the late 1980’s, the ice giants are arguably the least understood of the planets orbiting the Sun. A better understanding of these planets’ atmospheres will not only help satisfy the natural scientific curiosity we have about these distant spheres of gas, but also might provide insight into the dynamics and meteorology of our own planet’s atmosphere. Two new ground-based, near-infrared datasets of the ice giants are studied. Both datasets provide data in a portion of the
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Knappett, Diane Shirley. "Observing the distribution of atmospheric methane from space." Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10928.

Texto completo da fonte
Resumo:
Methane (CH4) is a potent greenhouse gas with a radiative forcing efficiency 21 times greater than that of carbon dioxide (CO2) and an atmospheric lifetime of approximately 12 years. Although the annual global source strength of CH4 is fairly well constrained, the temporal and spatial variability of individual sources and sinks is currently less well quantified. In order to constrain CH4 emission estimates, inversion models require satellite retrievals of XCH4 with an accuracy of < 1-2%. However, satellite retrievals of XCH4 in the shortwave infrared (SWIR) are often hindered by the presence o
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Warwick, Nicola Julie. "Global modelling of atmospheric methane and methyl bromide." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619980.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Teama, Doaa Galal. "A 30-Year Record of the Isotopic Composition of Atmospheric Methane." Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557627.

Texto completo da fonte
Resumo:
<p> Methane (CH<sub>4</sub>) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO<sub>2</sub>(based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH<sub>4</sub> (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wecht, Kevin James. "Quantifying Methane Emissions Using Satellite Observations." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11252.

Texto completo da fonte
Resumo:
Methane is the second most influential anthropogenic greenhouse gas. There are large uncertainties in the magnitudes and trends of methane emissions from different source types and source regions. Satellite observations of methane offer dense spatial coverage unachievable by suborbital observations. This thesis evaluates the capabilities of using satellite observations of atmospheric methane to provide high-resolution constraints on continental scale methane emissions. In doing so, I seek to evaluate the supporting role of suborbital observations, to inform the emission inventories on which po
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Butterworth, Anna Lucy. "Determination of the combined isotopic composition of atmospheric methane." Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264463.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Butenhoff, Christopher Lee. "Investigation of the sources and sinks of atmospheric methane." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/2813.

Texto completo da fonte
Resumo:
The work presented here represents a number of independent studies that investigated various components of the CH4 budget, namely the sources and sinks. We used a chemical-tracer model and created unique long-term time series of atmospheric CH4, carbon monoxide (CO), molecular hydrogen (H2), and methylchloroform (CH3CCl3) measurements at marine background air to derive histories of atmospheric hydroxyl radical (OH) - the main chemical oxidant of CH4, biomass burning - an important source of CH4 in the tropics, and emissions of CH4 from rice paddies - one of the largest anthropogenic sources of
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Srong, E. Kimberley. "Spectral parameters of methane for remote sounding of the Jovian atmosphere." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:0f870f86-c546-461d-aca7-61f1ccc249df.

Texto completo da fonte
Resumo:
Spectroscopic measurements in the infrared have proven to be a valuable source of information about the Jovian atmosphere. However, numerous questions remain, many of which will be addressed by the Galileo μission, due to arrive at Jupiter in December, 1995. One of the instruments on Galileo is the Near-Infrared Mapping Spectrometer (NIMS), which will measure temperature structure, cheμical composition, and cloud properties. The objective of the work described in this thesis was to investigate the transmittance properties of the Jovian atmosphere and, in particular, to obtain transmittance fun
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Snover, Amy Katherine. "The stable hydrogen isotopic composition of methane emitted from biomass burning and removed by oxic soils : application to the atmospheric methane budget /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11570.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bräunlich, Maya. "Study of atmospheric carbon monoxide and methane Untersuchung von atmosphärischen Kohlenmonoxid und Methan anhand von Isotopenmessungen /." [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8832641.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Atmospheric methane"

1

Khalil, Mohammad Aslam Khan, ed. Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

H, Bruhl Christoph, Thompson Anne M, and United States. Environmental Protection Agency., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. U.S. Environmental Protection Agency, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

M, Bruhl Christoph, Thompson Anne M, and United States. National Aeronautics and Space Administration., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. National Aeronautics and Space Administration, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

M, McIntosh Catherine, and Environmental Research Laboratories (U.S.), eds. Atmospheric CH₄ seasonal cycles and latitude gradient from the NOAA CMDL cooperative air sampling network : Forecast Systems Laboratory, Boulder, Colorado, August 1996. United States Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1996.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Workshop, WMO/UNEP Intergovernmental Panel on Climate Change International IPCC. Methane and nitrous oxide: Methods in national emissions inventories and options for control : proceedings, Euroase Hotel, Amersfoort, the Netherlands, 3-5 February 1993. National Institute of Public Health and Environmental Protection, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Khalil, M. A. K., ed. Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84605-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Khalil, M. A. K. 1950-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change (1991 : Portland, Or.), eds. Atmospheric methane: Sources, sinks, and role in global change. Springer-Verlag, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Steele, L. Paul. Atmospheric methane concentrations: The NOAA/CMDL Global Cooperative Flask Sampling Network, 1983-1988. Oak Ridge National Laboratory, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

M, Lang Patricia, and Climate Monitoring and Diagnostics Laboratory (U.S.), eds. Atmospheric methane data for 1989-1992 from the NOAA/CMDL global cooperative air sampling network. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Atmospheric methane"

1

Khalil, M. A. K. "Atmospheric Methane: An Introduction." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shearer, M. J., and M. A. K. Khalil. "Rice Agriculture: Emissions." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Levine, Joel S., Wesley R. Cofer, and Joseph P. Pinto. "Biomass Burning." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Matthews, Elaine. "Wetlands." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Thorneloe, Susan A., Morton A. Barlaz, Rebecca Peer, L. C. Huff, Lee Davis, and Joe Mangino. "Waste Management." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kirchgessner, David A. "Fossil Fuel Industries." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Judd, A. G. "Geological Sources of Methane." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wuebbles, Donald J., Katharine A. S. Hayhoe, and Rao Kotamarthi. "Methane in the Global Environment." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chappellaz, J., D. Raynaud, T. Blunier, and B. Stauffer. "The Ice Core Record of Atmospheric Methane." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Stevens, C. M., and M. Wahlen. "The Isotopic Composition of Atmospheric Methane and Its Sources." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Atmospheric methane"

1

Park, J. Y., H. Lee, J. Kim, J. Kim, Y. Lee, and S. Lee. "Methane absorption ability improvement of MOF-801 atmospheric pressure plasma treatment." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10625888.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kryuchkov, Alexander V., Viktor V. Filatov, Marianna P. Gerasimova, and Sergey A. Sadovnikov. "Fiber optical meter of methane in atmosphere." In XXIX International Symposium "Atmospheric and Ocean Optics, Atmospheric Physics", edited by Oleg A. Romanovskii. SPIE, 2023. http://dx.doi.org/10.1117/12.2690949.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tsvetova, Elena A. "Modeling of hydrodynamics of water-methane heterogeneous system." In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Meng, Lichun, Andreas Fix, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo. "Upconversion Detector for Methane Atmospheric Sensor." In Optics and Photonics for Energy and the Environment. OSA, 2017. http://dx.doi.org/10.1364/ee.2017.ew4b.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jarem, John M., Joseph H. Pierluissi, and William W. Ng. "A Transmittance Model For Atmospheric Methane." In 28th Annual Technical Symposium, edited by Richard A. Mollicone and Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.945011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fiedler, Michael, C. Goelz, and Ulrich Platt. "Nonresonant photoacoustic monitoring of atmospheric methane." In Environmental Sensing '92, edited by Harold I. Schiff and Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

van Herpen, Maarten, Matthew Johnson, Berend van de Kraats, et al. "ISAMO (Iron Salt Atmospheric Methane Oxidation)." In Goldschmidt2023. European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20643.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tanichev, Aleksandr S. "Method for fast modeling ν2 Raman band of methane". У 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, редактори Oleg A. Romanovskii та Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603359.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Voitsekhovskaya, Olga, Vitaliy Loskutov, Olga V. Shefer, and Danila Kashirskii. "Transmission of radiant energy by gas-aerosol medium containing methane." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2284933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ageev, Boris, and Yury Ponomarev. "Estimate of methane-capacity of aerogel samples of different compositions." In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2503956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Atmospheric methane"

1

Strand, Stuart, Neil Bruce, Liz Rylott, and Long Zhang. Phytoremediation of Atmospheric Methane. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada579442.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Butenhoff, Christopher. Investigation of the sources and sinks of atmospheric methane. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.2807.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hannah Dion-Kirschner, Hannah Dion-Kirschner. Investigating sage ecosystems as hotspots for atmospheric methane removal. Experiment, 2025. https://doi.org/10.18258/75776.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Safta, Cosmin, Ray Bambha, and Hope Michelsen. Estimating Regional Methane Emissions Through Atmospheric Measurements and Inverse Modeling. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Teama, Doaa. A 30-Year Record of the Isotopic Composition of Atmospheric Methane. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.642.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Costigan, Keeley Rochelle, and Manvendra Krishna Dubey. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1193618.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Steele, L., P. Lang, and R. Sepanski. Atmospheric methane concentrations---the NOAA/CMDL global cooperative flask sampling network, 1983--1988. Office of Scientific and Technical Information (OSTI), 1991. https://doi.org/10.2172/5480352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lauvaux, Thomas. TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1417183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

McFarlane, Karis J. Final Report for Wetlands as a Source of Atmospheric Methane: A Multiscale and Multidisciplinary Approach. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1333394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Jacobson, A. R., J. B. Miller, A. Ballantyne, et al. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, et al. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!