Artigos de revistas sobre o tema "Augmented imaging"

Siga este link para ver outros tipos de publicações sobre o tema: Augmented imaging.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Augmented imaging".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

DERSHAW, D. DAVID. "Imaging the Augmented Breast". Contemporary Diagnostic Radiology 21, n.º 12 (1998): 1–5. http://dx.doi.org/10.1097/00219246-199821120-00001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Stott, Peter. "Transcendental imaging and augmented reality". Technoetic Arts 9, n.º 1 (5 de setembro de 2011): 49–64. http://dx.doi.org/10.1386/tear.9.1.49_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Marchesini, Stefano, Andre Schirotzek, Chao Yang, Hau-tieng Wu e Filipe Maia. "Augmented projections for ptychographic imaging". Inverse Problems 29, n.º 11 (3 de outubro de 2013): 115009. http://dx.doi.org/10.1088/0266-5611/29/11/115009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Davidson, J., F. W. Poon, J. H. McKillop e H. W. Gray. "Pethidine-augmented HMPAO leukocyte imaging". Nuclear Medicine Communications 20, n.º 5 (maio de 1999): 479. http://dx.doi.org/10.1097/00006231-199905000-00087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

JACOBSON, ARNOLD F. "False-Positive Morphine Augmented Hepatobiliary Imaging". Clinical Nuclear Medicine 21, n.º 1 (janeiro de 1996): 81. http://dx.doi.org/10.1097/00003072-199601000-00030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Eklund, GW, RC Busby, SH Miller e JS Job. "Improved imaging of the augmented breast". American Journal of Roentgenology 151, n.º 3 (setembro de 1988): 469–73. http://dx.doi.org/10.2214/ajr.151.3.469.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Douglas, David, Clifford Wilke, J. Gibson, John Boone e Max Wintermark. "Augmented Reality: Advances in Diagnostic Imaging". Multimodal Technologies and Interaction 1, n.º 4 (8 de novembro de 2017): 29. http://dx.doi.org/10.3390/mti1040029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

CHANDRAMOULY, BELUR S., e RAKESH D. SHAH. "False-Positive Morphine Augmented Hepatobiliary Imaging". Clinical Nuclear Medicine 21, n.º 1 (janeiro de 1996): 80–81. http://dx.doi.org/10.1097/00003072-199601000-00029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kruse, Beth D., e A. Jill Leibman. "Breast Imaging and the Augmented Breast". Plastic Surgical Nursing 12, n.º 3 (1992): 109–16. http://dx.doi.org/10.1097/00006527-199201230-00005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Huch, R. A., W. Künzi, J. F. Debatin, W. Wiesner e G. P. Krestin. "MR imaging of the augmented breast". European Radiology 8, n.º 3 (27 de março de 1998): 371–76. http://dx.doi.org/10.1007/s003300050397.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Currie, Geoffrey M. "Intelligent Imaging: Artificial Intelligence Augmented Nuclear Medicine". Journal of Nuclear Medicine Technology 47, n.º 3 (10 de agosto de 2019): 217–22. http://dx.doi.org/10.2967/jnmt.119.232462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Nikou, Constantinos, Anthony M. Digioia, Mike Blackwell, Branislav Jaramaz e Takeo Kanade. "Augmented reality imaging technology for orthopaedic surgery". Operative Techniques in Orthopaedics 10, n.º 1 (janeiro de 2000): 82–86. http://dx.doi.org/10.1016/s1048-6666(00)80047-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Vortman, J. G., e A. Bar-Lev. "Augmented performance criterion for thermal imaging systems". Journal of the Optical Society of America A 3, n.º 5 (1 de maio de 1986): 750. http://dx.doi.org/10.1364/josaa.3.000750.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Mela, Christopher, Francis Papay e Yang Liu. "Novel Multimodal, Multiscale Imaging System with Augmented Reality". Diagnostics 11, n.º 3 (4 de março de 2021): 441. http://dx.doi.org/10.3390/diagnostics11030441.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
A novel multimodal, multiscale imaging system with augmented reality capability were developed and characterized. The system offers 3D color reflectance imaging, 3D fluorescence imaging, and augmented reality in real time. Multiscale fluorescence imaging was enabled by developing and integrating an in vivo fiber-optic microscope. Real-time ultrasound-fluorescence multimodal imaging used optically tracked fiducial markers for registration. Tomographical data are also incorporated using optically tracked fiducial markers for registration. Furthermore, we characterized system performance and registration accuracy in a benchtop setting. The multiscale fluorescence imaging facilitated assessing the functional status of tissues, extending the minimal resolution of fluorescence imaging to ~17.5 µm. The system achieved a mean of Target Registration error of less than 2 mm for registering fluorescence images to ultrasound images and MRI-based 3D model, which is within clinically acceptable range. The low latency and high frame rate of the prototype system has shown the promise of applying the reported techniques in clinically relevant settings in the future.
15

O’Reilly, M. K., P. J. Heagerty, L. S. Gold, D. F. Kallmes e J. G. Jarvik. "Augmented Reality". American Journal of Neuroradiology 41, n.º 8 (16 de julho de 2020): E67—E68. http://dx.doi.org/10.3174/ajnr.a6587.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Culp, William, e Timothy McCowan. "Ultrasound Augmented Thrombolysis". Current Medical Imaging Reviews 1, n.º 1 (1 de janeiro de 2005): 5–12. http://dx.doi.org/10.2174/1573405052953074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tajmir, Shahein H., e Tarik K. Alkasab. "Toward Augmented Radiologists". Academic Radiology 25, n.º 6 (junho de 2018): 747–50. http://dx.doi.org/10.1016/j.acra.2018.03.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Wang, Jingang, Xiao Xiao, Hong Hua e Bahram Javidi. "Augmented Reality 3D Displays With Micro Integral Imaging". Journal of Display Technology 11, n.º 11 (novembro de 2015): 889–93. http://dx.doi.org/10.1109/jdt.2014.2361147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Hogarth, D. Kyle. "Use of augmented fluoroscopic imaging during diagnostic bronchoscopy". Future Oncology 14, n.º 22 (setembro de 2018): 2247–52. http://dx.doi.org/10.2217/fon-2017-0686.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

YEN, T. C., K. L. KING, S. L. CHANG e S. H. YEH. "Morphine-augmented versus CCK-augmented cholescintigraphy in diagnosing acute cholecystitis". Nuclear Medicine Communications 16, n.º 2 (fevereiro de 1995): 84–87. http://dx.doi.org/10.1097/00006231-199502000-00004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

HE, Z., M. VERANI e X. LIU. "Nitrate-augmented myocardial imaging for assessment of myocardial viability". Journal of Nuclear Cardiology 2, n.º 4 (julho de 1995): 352–57. http://dx.doi.org/10.1016/s1071-3581(05)80081-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Laviada, Jaime, Miguel Lopez-Portugues, Ana Arboleya-Arboleya e Fernando Las-Heras. "Multiview mm-Wave Imaging With Augmented Depth Camera Information". IEEE Access 6 (2018): 16869–77. http://dx.doi.org/10.1109/access.2018.2816466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Deebika, D. "Augmented Reality Advancement X-Ray Imaging Medical Reality scanning". Biomedical and Pharmacology Journal 8, n.º 1 (30 de junho de 2015): 371–77. http://dx.doi.org/10.13005/bpj/623.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Ai, Danni, Jian Yang, Jingfan Fan, Yitian Zhao, Xianzheng Song, Jianbing Shen, Ling Shao e Yongtian Wang. "Augmented reality based real-time subcutaneous vein imaging system". Biomedical Optics Express 7, n.º 7 (13 de junho de 2016): 2565. http://dx.doi.org/10.1364/boe.7.002565.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Deng, Huan, Qiong-Hua Wang, Zhao-Long Xiong, Han-Le Zhang e Yan Xing. "Magnified augmented reality 3D display based on integral imaging". Optik 127, n.º 10 (maio de 2016): 4250–53. http://dx.doi.org/10.1016/j.ijleo.2016.01.185.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Elibol, Funda Dinç, Cenk Elibol, Ferda Bacaksizlar Sari e Okay Nazli. "Multimodality imaging features of augmented breasts via AQUAfilling gel injection: an imaging challenge". Journal of Aesthetic Nursing 10, n.º 1 (2 de fevereiro de 2021): 11–12. http://dx.doi.org/10.12968/joan.2021.10.1.11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kohli, Anirudh. "AI in Medical Imaging: Current and Future Status—Artificial Intelligence or Augmented Imaging?" Indian Journal of Radiology and Imaging 31, n.º 03 (julho de 2021): 525–26. http://dx.doi.org/10.1055/s-0041-1740168.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Leafblad, Nels, Elise Asghar e Robert Z. Tashjian. "Innovations in Shoulder Arthroplasty". Journal of Clinical Medicine 11, n.º 10 (16 de maio de 2022): 2799. http://dx.doi.org/10.3390/jcm11102799.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Innovations currently available with anatomic total shoulder arthroplasty include shorter stem designs and augmented/inset/inlay glenoid components. Regarding reverse shoulder arthroplasty (RSA), metal augmentation, including custom augments, on both the glenoid and humeral side have expanded indications in cases of bone loss. In the setting of revision arthroplasty, humeral options include convertible stems and newer tools to improve humeral implant removal. New strategies for treatment and surgical techniques have been developed for recalcitrant shoulder instability, acromial fractures, and infections after RSA. Finally, computer planning, navigation, PSI, and augmented reality are imaging options now available that have redefined preoperative planning and indications as well intraoperative component placement. This review covers many of the innovations in the realm of shoulder arthroplasty.
29

CABANA, M. D., A. ALAVI, J. A. BERLIN, J. A. SHEA, C. K. KIM e S. V. WILLIAMS. "Morphine-augmented hepatobiliary scintigraphy". Nuclear Medicine Communications 16, n.º 12 (dezembro de 1995): 1068–71. http://dx.doi.org/10.1097/00006231-199512000-00013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

von der Heide, Anna Maria, Pascal Fallavollita, Lejing Wang, Philipp Sandner, Nassir Navab, Simon Weidert e Ekkehard Euler. "Camera-augmented mobile C-arm (CamC): A feasibility study of augmented reality imaging in the operating room". International Journal of Medical Robotics and Computer Assisted Surgery 14, n.º 2 (21 de dezembro de 2017): e1885. http://dx.doi.org/10.1002/rcs.1885.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Chan, Harley H. L., Stephan K. Haerle, Michael J. Daly, Jinzi Zheng, Lauren Philp, Marco Ferrari, Catriona M. Douglas e Jonathan C. Irish. "An integrated augmented reality surgical navigation platform using multi-modality imaging for guidance". PLOS ONE 16, n.º 4 (30 de abril de 2021): e0250558. http://dx.doi.org/10.1371/journal.pone.0250558.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
An integrated augmented reality (AR) surgical navigation system that potentially improves intra-operative visualization of concealed anatomical structures. Integration of real-time tracking technology with a laser pico-projector allows the surgical surface to be augmented by projecting virtual images of lesions and critical structures created by multimodality imaging. We aim to quantitatively and qualitatively evaluate the performance of a prototype interactive AR surgical navigation system through a series of pre-clinical studies. Four pre-clinical animal studies using xenograft mouse models were conducted to investigate system performance. A combination of CT, PET, SPECT, and MRI images were used to augment the mouse body during image-guided procedures to assess feasibility. A phantom with machined features was employed to quantitatively estimate the system accuracy. All the image-guided procedures were successfully performed. The tracked pico-projector correctly and reliably depicted virtual images on the animal body, highlighting the location of tumour and anatomical structures. The phantom study demonstrates the system was accurate to 0.55 ± 0.33mm. This paper presents a prototype real-time tracking AR surgical navigation system that improves visualization of underlying critical structures by overlaying virtual images onto the surgical site. This proof-of-concept pre-clinical study demonstrated both the clinical applicability and high precision of the system which was noted to be accurate to <1mm.
32

Kaibara, Taro, R. John Hurlbert e Garnette R. Sutherland. "Intraoperative magnetic resonance imaging–augmented transoral resection of axial disease". Neurosurgical Focus 10, n.º 2 (fevereiro de 2001): 1–4. http://dx.doi.org/10.3171/foc.2001.10.2.5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Object Because transoral decompression of the cervicomedullary junction is compromised by a narrow surgical corridor, the adequacy of decompression/resection may be difficult to determine. This is problematic as spinal hardware may obscure postoperative radiological assessment, or the patient may require reoperation. The authors report three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 lesions causing craniocervical junction compression. Methods In all three patients the lesions involved the cervicomedullary junction: one case each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and one case of basilar invagination with a Chiari type I malformation. All three patients presented with progressive myelopathy. Surgery-planning MR imaging studies, performed after the induction of anesthesia, demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. In the two patients with carcinoma, posterior instrumentation was placed to achieve spinal stabilization. Planned suboccipital decompression and fixation was averted in the third case because MR imaging demonstrated that excellent decompression had been achieved. Conclusions Intraoperatively acquired MR images were instrumental in determining the adequacy of surgical decompression. In one patient the MR images changed the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operative time or neurosurgical techniques, including the instrumentation procedure.
33

Douglas, David, Emanuel Petricoin, Lance Liotta e Eugene Wilson. "D3D augmented reality imaging system: proof of concept in mammography". Medical Devices: Evidence and Research Volume 9 (agosto de 2016): 277–83. http://dx.doi.org/10.2147/mder.s110756.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Abi-Aad, Karl R., Ahmad Kareem Almekkawi, Evelyn Turcotte, Matthew E. Welz, Rudy J. Rahme, Devi P. Patra, Mark K. Lyons e Bernard R. Bendok. "Utility of Augmented Reality Imaging (GLOW800) in Resection of Hemangioblastoma". World Neurosurgery 136 (abril de 2020): 294. http://dx.doi.org/10.1016/j.wneu.2019.12.090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Schiavina, R., A. Angiolini, L. Bianchi, U. Barbaresi, A. Porreca, F. Chessa, S. Lodi et al. "Imaging guided surgery with augmented reality for robotic partial nephrectomy". European Urology Open Science 19 (julho de 2020): e2412. http://dx.doi.org/10.1016/s2666-1683(20)34267-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zou, Jing, Ilmari Pyykkö e Jari Hyttinen. "Inner ear barriers to nanomedicine-augmented drug delivery and imaging". Journal of Otology 11, n.º 4 (dezembro de 2016): 165–77. http://dx.doi.org/10.1016/j.joto.2016.11.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Eghbalzadeh, Kaveh, Elmar W. Kuhn, Anton Sabashnikov, Carolyn Weber, Cherif Sahyoun, Tanja Rudolph, Stephan Baldus, Thorsten C. W. Wahlers e Navid Mader. "“Vascular Outlining”: Augmented Imaging for Transfemoral Access—A Preclinical Investigation". Thoracic and Cardiovascular Surgeon 68, n.º 02 (28 de fevereiro de 2018): 158–61. http://dx.doi.org/10.1055/s-0038-1629922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Abstract Background Advanced visualization software tools have been used in clinics to improve the safety and accuracy of transcatheter procedure. Imaging techniques have greatly evolved during the era of transcatheter aortic valve implantation (TAVI). In a retrospective analysis, we investigated the feasibility of augmented fluoroscopy for iliofemoral access using a novel “Vascular Outlining” roadmapping technology. Methods The Vascular Outlining prototype device (Philips Healthcare) application was used with iliofemoral angiography of 10 patients undergoing transfemoral TAVI. The software processes any conventional angiographic sequences, extracting the static outline of vessels and projecting the two-dimensional vessel margins as a roadmap on live fluoroscopy. Post-processed results were clinically assessed to determine whether the technical performance of the tool is sufficient. Results Augmented imaging was possible in all investigated angiography sequences. The analysis of software-generated images showed accurate projection of the two-dimensional outline of the iliofemoral vessels as an overlay on the live fluoroscopy image in most cases. Overlay inaccuracy was only observed in cases with low contrast or patient movement. Conclusion In static and contrasted angiography sequences, “Vascular Outlining” showed accurate image overlay. We identified that the quality of the vascular outline is dependent on the opacification of the contrast injection and the stability of the patient on the table. With further development. this application might increase the accuracy of femoral puncture and reduce the incidence of vascular complications. Clinical trials are needed to confirm these hypotheses.
38

Bayat, Nozhan, e Puyan Mojabi. "A Multiplicative Regularizer Augmented With Spatial Priors for Microwave Imaging". IEEE Transactions on Antennas and Propagation 69, n.º 1 (janeiro de 2021): 606–11. http://dx.doi.org/10.1109/tap.2020.2998913.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Guven, H. Emre, Alper Gungor e Mujdat Cetin. "An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging". IEEE Transactions on Computational Imaging 2, n.º 3 (setembro de 2016): 235–50. http://dx.doi.org/10.1109/tci.2016.2580498.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Gorczyca, David P. "Magnetic Resonance Imaging of the Augmented Breast and Breast Tumors". Breast Journal 2, n.º 1 (janeiro de 1996): 18–22. http://dx.doi.org/10.1111/j.1524-4741.1996.tb00060.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zhang, Han-Le, Huan Deng, Wen-Tao Yu, Min-Yang He, Da-Hai Li e Qiong-Hua Wang. "Tabletop augmented reality 3D display system based on integral imaging". Journal of the Optical Society of America B 34, n.º 5 (17 de fevereiro de 2017): B16. http://dx.doi.org/10.1364/josab.34.000b16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Sorrentino, S., R. Schmidt, P. Donlan, R. Muto, M. Muto e P. Blasig. "Imaging of the augmented and reconstructed breast: a retrospective study". European Radiology 4, n.º 4 (1994): 364–70. http://dx.doi.org/10.1007/bf00599072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Agarwal, S., P. Nag, S. Sikora, T. L. Prasad, S. Kumar e R. K. Gupta. "Fentanyl-augmented MRCP". Abdominal Imaging 31, n.º 5 (7 de fevereiro de 2006): 582–87. http://dx.doi.org/10.1007/s00261-005-0155-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Schawkat, Khoschy, Michael Ith, Andreas Christe, Wolfgang Kühn, Yojena Chittazhathu, Lauren Bains, Val Murray Runge e Johannes T. Heverhagen. "Dynamic non-invasive ASL perfusion imaging of a normal pancreas with secretin augmented MR imaging". European Radiology 28, n.º 6 (4 de janeiro de 2018): 2389–96. http://dx.doi.org/10.1007/s00330-017-5227-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Lee, Seung Hyun, Yu Hua Quan, Min Sub Kim, Ki Hyeok Kwon, Byeong Hyeon Choi, Hyun Koo Kim e Beop-Min Kim. "Design and Testing of Augmented Reality-Based Fluorescence Imaging Goggle for Intraoperative Imaging-Guided Surgery". Diagnostics 11, n.º 6 (21 de maio de 2021): 927. http://dx.doi.org/10.3390/diagnostics11060927.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The different pathways between the position of a near-infrared camera and the user’s eye limit the use of existing near-infrared fluorescence imaging systems for tumor margin assessments. By utilizing an optical system that precisely matches the near-infrared fluorescence image and the optical path of visible light, we developed an augmented reality (AR)-based fluorescence imaging system that provides users with a fluorescence image that matches the real-field, without requiring any additional algorithms. Commercial smart glasses, dichroic beam splitters, mirrors, and custom near-infrared cameras were employed to develop the proposed system, and each mount was designed and utilized. After its performance was assessed in the laboratory, preclinical experiments involving tumor detection and lung lobectomy in mice and rabbits by using indocyanine green (ICG) were conducted. The results showed that the proposed system provided a stable image of fluorescence that matched the actual site. In addition, preclinical experiments confirmed that the proposed system could be used to detect tumors using ICG and evaluate lung lobectomies. The AR-based intraoperative smart goggle system could detect fluorescence images for tumor margin assessments in animal models, without disrupting the surgical workflow in an operating room. Additionally, it was confirmed that, even when the system itself was distorted when worn, the fluorescence image consistently matched the actual site.
46

Hall, FM, MJ Homer, CJ D'Orsi e GW Eklund. "Mammography of the augmented breast". American Journal of Roentgenology 153, n.º 5 (novembro de 1989): 1098–99. http://dx.doi.org/10.2214/ajr.153.5.1098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kaibara, Taro, R. John Hurlbert e Garnette R. Sutherland. "Transoral resection of axial lesions augmented by intraoperative magnetic resonance imaging". Journal of Neurosurgery: Spine 95, n.º 2 (outubro de 2001): 239–42. http://dx.doi.org/10.3171/spi.2001.95.2.0239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
✓ Transoral decompression of the cervicomedullary junction may be compromised by a narrow corridor in which surgery is performed, and thus the adequacy of surgical decompression/resection may be difficult to determine. This is problematic as the presence of spinal instrumentation may obscure the accuracy of postoperative radiological assessment, or the patient may require reoperation. The authors describe three patients in whom high-field intraoperative magnetic resonance (MR) images were acquired at various stages during the transoral resection of C-2 disease that had caused craniocervical junction compression. All three patients harbored different lesions involving the cervicomedullary junction: one each of plasmacytoma and metastatic breast carcinoma involving the odontoid process and C-2 vertebral body, and basilar invagination with a Chiari I malformation. All patients presented with progressive myelopathy. Surgical planning MR imaging studies performed after the induction of anesthesia demonstrated the lesion and its relationship to the planned surgical corridor. Transoral exposure was achieved through placement of a Crockard retractor system. In one case the soft palate was divided. Interdissection MR imaging revealed that adequate decompression had been achieved in all cases. The two patients with carcinoma required placement of posterior instrumentation for stabilization. Planned suboccipital decompression and placement of instrumentation were averted in the third case as the intraoperative MR images demonstrated that excellent decompression had been achieved. Intraoperatively acquired MR images were instrumental in determining the adequacy of the decompressive surgery. In one of the three cases, examination of the images led the authors to change the planned surgical procedure. Importantly, the acquisition of intraoperative MR images did not adversely affect operating time or neurosurgical techniques, including instrumentation requirements.
48

Chauvet, Pauline, Nicolas Bourdel, Lilian Calvet, Benoit Magnin, Guillaume Teluob, Michel Canis e Adrien Bartoli. "Augmented Reality with Diffusion Tensor Imaging and Tractography during Laparoscopic Myomectomies". Journal of Minimally Invasive Gynecology 27, n.º 4 (maio de 2020): 973–76. http://dx.doi.org/10.1016/j.jmig.2019.11.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Pereira, Mauricio, Dylan Burns, Daniel Orfeo, Yu Zhang, Liangbao Jiao, Dryver Huston e Tian Xia. "3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization". IEEE Transactions on Geoscience and Remote Sensing 58, n.º 8 (agosto de 2020): 5666–75. http://dx.doi.org/10.1109/tgrs.2020.2968208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

O'Keefe, Jacquelyn R., Jenny Maree Wilkinson e Kelly Maree Spuur. "Current practice in mammographic imaging of the augmented breast in Australia". Journal of Medical Radiation Sciences 67, n.º 2 (24 de janeiro de 2020): 102–10. http://dx.doi.org/10.1002/jmrs.374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia