Artigos de revistas sobre o tema "Automotive electric powertrain"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Automotive electric powertrain".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Koch, Alexander, Tim Bürchner, Thomas Herrmann, and Markus Lienkamp. "Eco-Driving for Different Electric Powertrain Topologies Considering Motor Efficiency." World Electric Vehicle Journal 12, no. 1 (2021): 6. http://dx.doi.org/10.3390/wevj12010006.
Texto completo da fonteAkkaya, Filiz, Wolfgang Klos, Timm Schwämmle, Gregor Haffke, and Hans-Christian Reuss. "Holistic Testing Strategies for Electrified Vehicle Powertrains in Product Development Process." World Electric Vehicle Journal 9, no. 1 (2018): 5. http://dx.doi.org/10.3390/wevj9010005.
Texto completo da fonteDatlinger, Christoph, and Mario Hirz. "Benchmark of Rotor Position Sensor Technologies for Application in Automotive Electric Drive Trains." Electronics 9, no. 7 (2020): 1063. http://dx.doi.org/10.3390/electronics9071063.
Texto completo da fonteTamura, Ayataro, Takayuki Ishibashi, and Atsuo Kawamura. "EV Range Extender in a Two-Battery HEECS Chopper-Based Powertrain." World Electric Vehicle Journal 10, no. 2 (2019): 19. http://dx.doi.org/10.3390/wevj10020019.
Texto completo da fonteChen, Fei Fei, Peng Yu, and Tong Zhang. "Modal Analysis for the Powertrain of Electric Vehicle by Finite Element Method." Applied Mechanics and Materials 437 (October 2013): 140–45. http://dx.doi.org/10.4028/www.scientific.net/amm.437.140.
Texto completo da fonteKim, Kiyoung, Namdoo Kim, Jongryeol Jeong, et al. "A Component-Sizing Methodology for a Hybrid Electric Vehicle Using an Optimization Algorithm." Energies 14, no. 11 (2021): 3147. http://dx.doi.org/10.3390/en14113147.
Texto completo da fonteMaddumage, W. U., K. Y. Abeyasighe, M. S. M. Perera, R. A. Attalage, and P. Kelly. "Comparing Fuel Consumption and Emission Levels of Hybrid Powertrain Configurations and a Conventional Powertrain in Varied Drive Cycles and Degree of Hybridization." Science & Technique 19, no. 1 (2020): 20–33. http://dx.doi.org/10.21122/2227-1031-2020-19-1-20-33.
Texto completo da fonteOrecchini, Fabio, Adriano Santiangeli, and Fabrizio Zuccari. "Real Drive Well-to-Wheel Energy Analysis of Conventional and Electrified Car Powertrains." Energies 13, no. 18 (2020): 4788. http://dx.doi.org/10.3390/en13184788.
Texto completo da fontePathak, Aditya, Ganesh Sethuraman, Sebastian Krapf, Aybike Ongel, and Markus Lienkamp. "Exploration of Optimal Powertrain Design Using Realistic Load Profiles." World Electric Vehicle Journal 10, no. 3 (2019): 56. http://dx.doi.org/10.3390/wevj10030056.
Texto completo da fonteTamada, Sireesha, Debraj Bhattacharjee, and Pranab K. Dan. "Review on automatic transmission control in electric and non-electric automotive powertrain." International Journal of Vehicle Performance 6, no. 1 (2020): 98. http://dx.doi.org/10.1504/ijvp.2020.104500.
Texto completo da fonteJaniaud, Noëlle, François-Xavier Vallet, Marc Petit, and Guillaume Sandou. "Electric Vehicle Powertrain Architecture and Control Global Optimization." World Electric Vehicle Journal 3, no. 4 (2009): 682–93. http://dx.doi.org/10.3390/wevj3040682.
Texto completo da fonteŠkugor, Soldo, and Deur. "Analysis of Optimal Battery State-of-Charge Trajectory for Blended Regime of Plug-in Hybrid Electric Vehicle." World Electric Vehicle Journal 10, no. 4 (2019): 75. http://dx.doi.org/10.3390/wevj10040075.
Texto completo da fonteYildiz, Ahmet, and Mert Ali Özel. "A Comparative Study of Energy Consumption and Recovery of Autonomous Fuel-Cell Hydrogen–Electric Vehicles Using Different Powertrains Based on Regenerative Braking and Electronic Stability Control System." Applied Sciences 11, no. 6 (2021): 2515. http://dx.doi.org/10.3390/app11062515.
Texto completo da fonteXi, Ping Yuan. "System Design and Simulation on Powertrain of Electric Vehicle." Applied Mechanics and Materials 101-102 (September 2011): 294–97. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.294.
Texto completo da fonteBiernat, Piotr, Piotr Rumniak, Marek Michalczuk, et al. "Powertrain system with the ultracapacitor-based auxiliary energy storage for an urban battery electric vehicle." Archives of Transport 27-28, no. 3-4 (2013): 45–64. http://dx.doi.org/10.5604/01.3001.0004.0107.
Texto completo da fonteSchriefer, T., N. Schreibmüller, C. Horwath, et al. "Serienfähige Hochstromkontakte für integrierte elektrische Fahrzeugantriebe */High current contacts for integrated electric drives." wt Werkstattstechnik online 109, no. 05 (2019): 335–41. http://dx.doi.org/10.37544/1436-4980-2019-05-37.
Texto completo da fonteMarques dos Santos, Fabio Luis, Paolo Tecchio, Fulvio Ardente, and Ferenc Pekár. "User Automotive Powertrain-Type Choice Model and Analysis Using Neural Networks." Sustainability 13, no. 2 (2021): 585. http://dx.doi.org/10.3390/su13020585.
Texto completo da fonteMarques dos Santos, Fabio Luis, Paolo Tecchio, Fulvio Ardente, and Ferenc Pekár. "User Automotive Powertrain-Type Choice Model and Analysis Using Neural Networks." Sustainability 13, no. 2 (2021): 585. http://dx.doi.org/10.3390/su13020585.
Texto completo da fonteSuh, B., A. Frank, Y. J. Chung, E. Y. Lee, Y. H. Chang, and S. B. Han. "Powertrain system optimization for a heavy-duty hybrid electric bus." International Journal of Automotive Technology 12, no. 1 (2011): 131–39. http://dx.doi.org/10.1007/s12239-011-0017-9.
Texto completo da fonteZähringer, Maximilian, Svenja Kalt, and Markus Lienkamp. "Compressed Driving Cycles Using Markov Chains for Vehicle Powertrain Design." World Electric Vehicle Journal 11, no. 3 (2020): 52. http://dx.doi.org/10.3390/wevj11030052.
Texto completo da fonteKönig, Adrian, Lorenzo Nicoletti, Daniel Schröder, Sebastian Wolff, Adam Waclaw, and Markus Lienkamp. "An Overview of Parameter and Cost for Battery Electric Vehicles." World Electric Vehicle Journal 12, no. 1 (2021): 21. http://dx.doi.org/10.3390/wevj12010021.
Texto completo da fonteKim, Namdoo, Sungwook Choi, Jongryeol Jeong, Ram Vijayagopal, Kevin Stutenberg, and Aymeric Rousseau. "Vehicle Level Control Analysis for Voltec Powertrain." World Electric Vehicle Journal 9, no. 2 (2018): 29. http://dx.doi.org/10.3390/wevj9020029.
Texto completo da fonteWang, C. L., C. L. Yin, T. Zhang, and L. Zhu. "Powertrain design and experiment research of a parallel hybrid electric vehicle." International Journal of Automotive Technology 10, no. 5 (2009): 589–96. http://dx.doi.org/10.1007/s12239-009-0069-2.
Texto completo da fonteWan, Mao Song, Qi Wen Qiu, Li Ya Lv, et al. "Design and Analysis of CAN Communication Network Applied in Hybrid Electric Vehicle." Advanced Materials Research 971-973 (June 2014): 1135–40. http://dx.doi.org/10.4028/www.scientific.net/amr.971-973.1135.
Texto completo da fonteMansour, Charbel, Wissam Bou Nader, Clément Dumand, and Maroun Nemer. "Waste heat recovery from engine coolant on mild hybrid vehicle using organic Rankine cycle." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 10 (2018): 2502–17. http://dx.doi.org/10.1177/0954407018797819.
Texto completo da fonteWeigelt, Michael, Andreas Mayr, Alexander Kühl, and Jörg Franke. "Methodical Comparison of Alternative Powertrain Technologies for Long-Distance Mobility Using Germany as an Example." World Electric Vehicle Journal 10, no. 4 (2019): 77. http://dx.doi.org/10.3390/wevj10040077.
Texto completo da fonteTaghavipour, Amir, and Ali Alipour. "HIL Evaluation of a Novel Real-time Energy Management System for an HEV with a Continuously Variable Transmission." Strojniški vestnik – Journal of Mechanical Engineering 67, no. 4 (2021): 142–52. http://dx.doi.org/10.5545/sv-jme.2020.7017.
Texto completo da fonteTuan, Vu Tran, Matheepot Phattanasak, and Sangkla Kreuawan. "Integrated Charger-Inverter for High-Performance Electric Motorcycles." World Electric Vehicle Journal 12, no. 1 (2021): 19. http://dx.doi.org/10.3390/wevj12010019.
Texto completo da fonteDanquah, Benedikt, Stefan Riedmaier, Yasin Meral, and Markus Lienkamp. "Statistical Validation Framework for Automotive Vehicle Simulations Using Uncertainty Learning." Applied Sciences 11, no. 5 (2021): 1983. http://dx.doi.org/10.3390/app11051983.
Texto completo da fonteBIELACZYC, Piotr, and Joseph WOODBURN. "Trends in automotive emissions legislation: impact on LD engine development, fuels, lubricants, and test methods – a global view, with a focus on WLTP and RDE regulations – Summary of the 6th International Exhaust Emissions Symposium (IEES)." Combustion Engines 174, no. 3 (2018): 56–65. http://dx.doi.org/10.19206/ce-2018-306.
Texto completo da fonteGómez Vilchez, Jonatan J., and Christian Thiel. "The Effect of Reducing Electric Car Purchase Incentives in the European Union." World Electric Vehicle Journal 10, no. 4 (2019): 64. http://dx.doi.org/10.3390/wevj10040064.
Texto completo da fonteBou Nader, Wissam S., Charbel J. Mansour, Maroun G. Nemer, and Olivier M. Guezet. "Exergo-technological explicit methodology for gas-turbine system optimization of series hybrid electric vehicles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, no. 10 (2017): 1323–38. http://dx.doi.org/10.1177/0954407017728849.
Texto completo da fonteBastin, Matthew Andrew, and R. Peter Jones. "Development of a Multibody Systems Model for Investigation of the Effects of Hybrid Electric Vehicle Powertrains on Vehicle Dynamics." International Journal of Online Engineering (iJOE) 11, no. 6 (2015): 33. http://dx.doi.org/10.3991/ijoe.v11i6.5033.
Texto completo da fonteTemporelli, Andrea, Maria Leonor Carvalho, and Pierpaolo Girardi. "Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature." Energies 13, no. 11 (2020): 2864. http://dx.doi.org/10.3390/en13112864.
Texto completo da fonteBahamonde Noriega, Sebastian, Carlo De Servi, and Piero Colonna. "HYBRID ELECTRIC POWERTRAIN FOR LONG-HAUL TRUCKS AND BUSES: PRELIMINARY ANALYSIS OF A NEW CONCEPT BASED ON A COMBINED CYCLE POWER PLANT." Journal of the Global Power and Propulsion Society 4 (May 20, 2020): 63–79. http://dx.doi.org/10.33737/jgpps/118979.
Texto completo da fonteMorozov, Alexei, Kieran Humphries, Ting Zou, Tanvir Rahman, and Jorge Angeles. "Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks." SAE International Journal of Alternative Powertrains 7, no. 1 (2018): 27–42. http://dx.doi.org/10.4271/08-07-01-0002.
Texto completo da fonteReksowardojo, Iman K., Rafi R. Arya, Bentang A. Budiman, et al. "Energy Management System Design for Good Delivery Electric Trike Equipped with Different Powertrain Configurations." World Electric Vehicle Journal 11, no. 4 (2020): 76. http://dx.doi.org/10.3390/wevj11040076.
Texto completo da fonteChindamo, D., M. Gadola, and M. Romano. "Simulation tool for optimization and performance prediction of a generic hybrid electric series powertrain." International Journal of Automotive Technology 15, no. 1 (2014): 135–44. http://dx.doi.org/10.1007/s12239-014-0015-9.
Texto completo da fonteWilhelm, Erik, Johannes Hofer, and Lynette Cheah. "APPLYING OPTIMAL CHOICES FOR REAL POWERTRAIN AND LIGHTWEIGHTING TECHNOLOGY OPTIONS TO PASSENGER VEHICLES UNDER UNCERTAINTY." Transport 32, no. 2 (2017): 209–20. http://dx.doi.org/10.3846/16484142.2017.1286611.
Texto completo da fonteCiceo, Sebastian, Cassio T. Faria, Johan Gyselinck, and Claudia Martis. "Multi-Attribute, System-Level Design Process for Automotive Powertrain Electric Drives: An Integrated Approach." SAE International Journal of Alternative Powertrains 7, no. 2 (2018): 117–28. http://dx.doi.org/10.4271/08-07-02-0007.
Texto completo da fonteSavelsberg, Rene, Jakob Andert, Serge Klein, and Stefan Pischinger. "Virtual shaft: Robust coupling by bidirectional and distributed prediction of coupling values." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 10-11 (2020): 2419–28. http://dx.doi.org/10.1177/0954407020906629.
Texto completo da fonteKawale, Praniali Surendra. "High Voltage Gain Interleaved Boost Converter with Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 4728–32. http://dx.doi.org/10.22214/ijraset.2021.35499.
Texto completo da fonteQuantmeyer, Florian, and Xiao Bo Liu-Henke. "Hardware in the Loop Test Rig for Development of Control Algorithms for Electric Vehicles." Solid State Phenomena 198 (March 2013): 507–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.198.507.
Texto completo da fonteVan Mierlo, Joeri, Maitane Berecibar, Mohamed El Baghdadi, et al. "Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies." World Electric Vehicle Journal 12, no. 1 (2021): 20. http://dx.doi.org/10.3390/wevj12010020.
Texto completo da fonteSu, Ming, and Ching Chi Chen. "Performance and Reliability Requirements for the Application of SiC Power MOSFET in Electrified Vehicle Drive Systems." Materials Science Forum 924 (June 2018): 887–90. http://dx.doi.org/10.4028/www.scientific.net/msf.924.887.
Texto completo da fonteFranceschi, Alessandro, Nicolò Cavina, Riccardo Parenti, Maurizio Reggiani, and Enrico Corti. "Energy Management Optimization of a Dual Motor Lithium Ion Capacitors-Based Hybrid Super Sport Car." Applied Sciences 11, no. 2 (2021): 885. http://dx.doi.org/10.3390/app11020885.
Texto completo da fonteLandolfi, Enrico, Francesco Junior Minervini, Nicola Minervini, Vincenzo De Bellis, Enrica Malfi, and Ciro Natale. "Integration of a Model Predictive Control with a Fast Energy Management Strategy for a Hybrid Powertrain of a Connected and Automated Vehicle." World Electric Vehicle Journal 12, no. 3 (2021): 159. http://dx.doi.org/10.3390/wevj12030159.
Texto completo da fonteKwon, Kihan, Minsik Seo, and Seungjae Min. "Multi-Objective Optimization of Powertrain Components for Electric Vehicles Using a Two-Stage Analysis Model." International Journal of Automotive Technology 21, no. 6 (2020): 1495–505. http://dx.doi.org/10.1007/s12239-020-0141-5.
Texto completo da fonteIslam, Ehsan Sabri, Ayman Moawad, Namdoo Kim, and Aymeric Rousseau. "Future Cost Benefits Analysis for Electrified Vehicles from Advances Due to U.S. Department of Energy Targets." World Electric Vehicle Journal 12, no. 2 (2021): 84. http://dx.doi.org/10.3390/wevj12020084.
Texto completo da fonteWang, Peng, Qin Qin, Bao Kun Liu, Shu Gang Jiang, and Hong Lian Li. "Design of Powertrain Control System in Hybrid Electric Vehicle Based on MCU C8051F020." Advanced Materials Research 512-515 (May 2012): 2589–93. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.2589.
Texto completo da fonte