Literatura científica selecionada sobre o tema "Axial piston machine"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Axial piston machine".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Axial piston machine"
Manring, Noah D., Viral S. Mehta, Frank J. Raab e Kevin J. Graf. "The Shaft Torque of a Tandem Axial-Piston Pump". Journal of Dynamic Systems, Measurement, and Control 129, n.º 3 (7 de dezembro de 2006): 367–71. http://dx.doi.org/10.1115/1.2719785.
Texto completo da fonteManring, Noah D. "Friction Forces Within the Cylinder Bores of Swash-Plate Type Axial-Piston Pumps and Motors". Journal of Dynamic Systems, Measurement, and Control 121, n.º 3 (1 de setembro de 1999): 531–37. http://dx.doi.org/10.1115/1.2802507.
Texto completo da fonteStazhkov, S., A. Kuzmin, V. Elchinskiy e N. Yakovenko. "Tribological tests of the improved piston mechanism of the axial piston hydraulic machine". IOP Conference Series: Materials Science and Engineering 966 (14 de novembro de 2020): 012120. http://dx.doi.org/10.1088/1757-899x/966/1/012120.
Texto completo da fonteYafei, Lei, Jiang Wanlu, Niu Hongjie, Shi Xiaodong e Yang Xukang. "Fault Diagnosis of Axial Piston Pump Based on Extreme-Point Symmetric Mode Decomposition and Random Forests". Shock and Vibration 2021 (30 de junho de 2021): 1–16. http://dx.doi.org/10.1155/2021/6649603.
Texto completo da fonteErnst, Meike, Andrea Vacca, Monika Ivantysynova e Georg Enevoldsen. "Tailoring the Bore Surfaces of Water Hydraulic Axial Piston Machines to Piston Tilt and Deformation". Energies 13, n.º 22 (17 de novembro de 2020): 5997. http://dx.doi.org/10.3390/en13225997.
Texto completo da fonteKuz'min, A. O., V. V. Popov e S. M. Stazhkov. "Hydrodynamic processes in the piston and cylinder unit of axial-piston hydraulic machines". Journal of «Almaz – Antey» Air and Space Defence Corporation, n.º 4 (30 de dezembro de 2017): 86–90. http://dx.doi.org/10.38013/2542-0542-2017-4-86-90.
Texto completo da fonteKibakov, Oleksandr, Yuriy Khomyak, Stanislav Medvedev, Ilya Nikolenko e Victoria Zheglovа. "Endurance limit of the axial-piston hydraulic machine cylinder block". Diagnostyka 21, n.º 1 (21 de janeiro de 2020): 71–79. http://dx.doi.org/10.29354/diag/116691.
Texto completo da fonteChacon, Rene, e Monika Ivantysynova. "Virtual Prototyping of Axial Piston Machines: Numerical Method and Experimental Validation". Energies 12, n.º 9 (2 de maio de 2019): 1674. http://dx.doi.org/10.3390/en12091674.
Texto completo da fonteWei, Shi Yang, Guang Zhen Cheng, Zhe Tong, Jia Hang Ma, Yan Chun Gu e Qi Feng You. "Structure Optimization Design about the Wet Grinding Sanding Machine with Double Cooling System". Applied Mechanics and Materials 685 (outubro de 2014): 208–11. http://dx.doi.org/10.4028/www.scientific.net/amm.685.208.
Texto completo da fonteManring, Noah D. "Tipping the Cylinder Block of an Axial-Piston Swash-Plate Type Hydrostatic Machine". Journal of Dynamic Systems, Measurement, and Control 122, n.º 1 (3 de outubro de 1997): 216–21. http://dx.doi.org/10.1115/1.482445.
Texto completo da fonteTeses / dissertações sobre o assunto "Axial piston machine"
Löfstrand, Grip Rasmus. "A mechanical model of an axial piston machine". Licentiate thesis, KTH, Machine Design (Div.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10948.
Texto completo da fonteA mechanical model of an axial piston-type machine with a so-called wobble plate and Z-shaft mechanism is presented. The overall aim is to design and construct an oil-free piston expander demonstrator as a first step to realizing an advanced and compact small-scale steam engine system. The benefits of a small steam engine are negligible NOx emissions (due to continuous, low-temperature combustion), no gearbox needed, fuel flexibility (e.g., can run on biofuel and solar), high part-load efficiency, and low noise. Piston expanders, compared with turbines or clearance-sealed rotary displacement machines, have higher mechanical losses but lower leakage losses, much better part-load efficiency, and for many applications a more favourable (i.e., lower) speed. A piston expander is thus feasible for directly propelling small systems in the vehicular power range. An axial piston machine with minimized contact pressures and sliding velocities, and with properly selected construction materials for steam/water lubrication, should enable completely oil-free operation. An oil-free piston machine also has potential for other applications, for example, as a refrigerant (e.g., CO2) expander in a low-temperature Rankine cycle or as a refrigerant compressor.
An analytical rigid-body kinematics and inverse dynamics model of the machine is presented. The kinematical analysis generates the resulting motion of the integral parts of the machine, fully parameterized. Inverse dynamics is applied when the system motion is completely known, and the method yields required external and internal forces and torques. The analytical model made use of the “Sophia” plug-in developed by Lesser for the simple derivation of rotational matrices relating different coordinate systems and for vector differentiation. Numerical solutions were computed in MATLAB. The results indicate a large load bearing in the conical contact surface between the mechanism’s wobble plate and engine block. The lateral force between piston and cylinder is small compared with that of a comparable machine with a conventional crank mechanism.
This study aims to predict contact loads and sliding velocities in the component interfaces. Such data are needed for bearing and component dimensioning and for selecting materials and coatings. Predicted contact loads together with contact geometries can also be used as input for tribological rig testing. Results from the model have been used to dimension the integral parts, bearings and materials of a physical demonstrator of the super-critical steam expander application as well as in component design and concept studies.
Löfstrand, Grip Rasmus. "A mechanical model of an axial piston machine". Stockholm : Skolan för industirell teknik och management, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10948.
Texto completo da fonteWondergem, Ashley, e Monika Ivantysynova. "The Impact of Micro-Surface Shaping of the Piston on the Piston/Cylinder Interface of an Axial Piston Machine". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-200169.
Texto completo da fonteKim, Taeho, e Monika Ivantysynova. "Active Vibration Control of Axial Piston Machine using Higher Harmonic Least Mean Square Control of Swash Plate". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199412.
Texto completo da fonteGeffroy, Stefan, Niklas Bauer, Tobias Mielke, Stephan Wegner, Stefan Gels, Hubertus Murrenhoff e Katharina Schmitz. "Optimization of the tribological contact of valve plate and cylinder block within axial piston machines". Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71109.
Texto completo da fonteChacon, Rene, e Monika Ivantysynova. "An Investigation of the Impact of the Elastic Deformation of the End case/Housing on Axial Piston Machines Cylinder Block/Valve Plate Lubricating Interface". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199578.
Texto completo da fonteWegner, Stephan, Fabian Löschner, Stefan Gels e Hubertus Murrenhoff. "Validation of the physical effect implementation in a simulation model for the cylinder block/valve plate contact supported by experimental investigations". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199564.
Texto completo da fonteKayani, Omer Khaleeq, e Muhammad Sohaib. "Generic Simulation Model Development of Hydraulic Axial Piston Machines". Thesis, Linköpings universitet, Fluida och mekatroniska system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76575.
Texto completo da fonteHaynes, Jonathan Mark. "Axial piston pump leakage modelling and measurement". Thesis, Cardiff University, 2007. http://orca.cf.ac.uk/55178/.
Texto completo da fonteSchleihs, Christian [Verfasser]. "Acoustic Design of Hydraulic Axial Piston Swashplate Machines / Christian Schleihs". Aachen : Shaker, 2017. http://d-nb.info/1138177202/34.
Texto completo da fonteLivros sobre o assunto "Axial piston machine"
Fluid Power Pumps and Motors: Analysis, Design and Control. McGraw-Hill Education, 2013.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Axial piston machine"
Hu, Jinwei, Yuan Lan, Xianghui Zeng, Jiahai Huang, Bing Wu, Liwei Yao e Jinhong Wei. "Fault Diagnosis on Sliding Shoe Wear of Axial Piston Pump Based on Extreme Learning Machine". In Proceedings in Adaptation, Learning and Optimization, 114–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01520-6_10.
Texto completo da fonte"Axial Piston Machine Endurance". In Encyclopedia of Lubricants and Lubrication, 127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-22647-2_100047.
Texto completo da fonteKuzmin, Anton, Valery Popov e Sergey Stazhkov. "Hydrodynamic Processes in Piston–Bore Interface of Axial Piston Swash Plate Machine". In DAAAM Proceedings, 0621–26. DAAAM International Vienna, 2017. http://dx.doi.org/10.2507/28th.daaam.proceedings.088.
Texto completo da fonteStazhkov, S. "Development of an Axial-Piston Hydraulic Machine of a Drive System". In DAAAM International Scientific Book 2013, 277–96. DAAAM International Vienna, 2013. http://dx.doi.org/10.2507/daaam.scibook.2013.12.
Texto completo da fonteElchinsky, Viktor, Anton Kuzmin, Valery Popov e Sergey Stazhkov. "Influence of the Design Parameters of the Piston Mechanism on the Dead Band of the Axial-Piston Hydraulic Machine". In DAAAM Proceedings, 0384–90. DAAAM International Vienna, 2020. http://dx.doi.org/10.2507/31st.daaam.proceedings.053.
Texto completo da fonteMaradey Lázaro, Jessica Gissella, e Carlos Borrás Pinilla. "Detection and Classification of Wear Fault in Axial Piston Pumps". In Pattern Recognition Applications in Engineering, 286–316. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1839-7.ch012.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Axial piston machine"
Achten, Peter A. J. "Power Density of the Floating Cup Axial Piston Principle". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59006.
Texto completo da fonteEricson, Liselott, e Jonas Forssell. "A Novel Axial Piston Pump/Motor Principle With Floating Pistons: Design and Testing". In BATH/ASME 2018 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fpmc2018-8937.
Texto completo da fonteChacon, Rene, e Monika Ivantysynova. "Advanced Virtual Prototyping of Axial Piston Machines". In 9th FPNI Ph.D. Symposium on Fluid Power. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpni2016-1561.
Texto completo da fonteSarode, Shanmukh, e Lizhi Shang. "Novel Pressure Adaptive Piston Cylinder Interface Design for Axial Piston Machines". In ASME/BATH 2019 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/fpmc2019-1645.
Texto completo da fonteDeeken, Michael. "Simulation of the Tribological Contacts in an Axial Piston Machine". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59968.
Texto completo da fonteShinn, Tyler, Richard Carpenter e Roger C. Fales. "State Estimation Techniques for Axial Piston Pump Health Monitoring". In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9621.
Texto completo da fonteErnst, Meike H., e Monika Ivantysynova. "Cylinder Bore Micro-Surface Shaping for High Pressure Axial Piston Machine Operation Using Water as Hydraulic Fluid". In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4285.
Texto completo da fonteWegner, Stephan, Stefan Gels, Dal Sik Jang e Hubertus Murrenhoff. "Experimental Investigation of the Cylinder Block Movement in an Axial Piston Machine". In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9529.
Texto completo da fonteKim, Taeho, e Monika Ivantysynova. "Active Vibration/Noise Control of Axial Piston Machine Using Swash Plate Control". In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4304.
Texto completo da fontePelosi, Matteo, e Monika Ivantysynova. "Surface Deformations Enable High Pressure Operation of Axial Piston Pumps". In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5979.
Texto completo da fonte