Literatura científica selecionada sobre o tema "Bacteria in cancer therapy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bacteria in cancer therapy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bacteria in cancer therapy"
Duong, Mai Thi-Quynh, Yeshan Qin, Sung-Hwan You e Jung-Joon Min. "Bacteria-cancer interactions: bacteria-based cancer therapy". Experimental & Molecular Medicine 51, n.º 12 (dezembro de 2019): 1–15. http://dx.doi.org/10.1038/s12276-019-0297-0.
Texto completo da fonteYaghoubi, Atieh, Majid Khazaei, Seyed Mahdi Hasanian, Amir Avan, William C. Cho e Saman Soleimanpour. "Bacteriotherapy in Breast Cancer". International Journal of Molecular Sciences 20, n.º 23 (23 de novembro de 2019): 5880. http://dx.doi.org/10.3390/ijms20235880.
Texto completo da fonteHarimoto, Tetsuhiro, e Tal Danino. "Engineering bacteria for cancer therapy". Emerging Topics in Life Sciences 3, n.º 5 (11 de outubro de 2019): 623–29. http://dx.doi.org/10.1042/etls20190096.
Texto completo da fonteMathuriya, Abhilasha S. "Magnetotactic bacteria for cancer therapy". Biotechnology Letters 37, n.º 3 (12 de novembro de 2014): 491–98. http://dx.doi.org/10.1007/s10529-014-1728-6.
Texto completo da fonteDougan, Michael, e Stephanie K. Dougan. "Programmable bacteria as cancer therapy". Nature Medicine 25, n.º 7 (julho de 2019): 1030–31. http://dx.doi.org/10.1038/s41591-019-0513-4.
Texto completo da fonteFdez-Gubieda, M. L., J. Alonso, A. García-Prieto, A. García-Arribas, L. Fernández Barquín e A. Muela. "Magnetotactic bacteria for cancer therapy". Journal of Applied Physics 128, n.º 7 (21 de agosto de 2020): 070902. http://dx.doi.org/10.1063/5.0018036.
Texto completo da fonteDarmov, I. V., Ya A. Kibirev, I. V. Marakulin e S. N. Yanov. "USE OF BACTERIA IN CANCER THERAPY (REVIEW)". Russian Journal of Biotherapy 18, n.º 4 (2 de dezembro de 2019): 34–42. http://dx.doi.org/10.17650/1726-9784-2019-18-4-34-42.
Texto completo da fonteYoon, Wonsuck, Yongsung Park, Seunghyun Kim, Yongkeun Park e Chul Yong Kim. "Combined Therapy with microRNA-Expressing Salmonella and Irradiation in Melanoma". Microorganisms 9, n.º 11 (22 de novembro de 2021): 2408. http://dx.doi.org/10.3390/microorganisms9112408.
Texto completo da fonteGupta, Kajal H., Christina Nowicki, Eileena F. Giurini, Amanda L. Marzo e Andrew Zloza. "Bacterial-Based Cancer Therapy (BBCT): Recent Advances, Current Challenges, and Future Prospects for Cancer Immunotherapy". Vaccines 9, n.º 12 (18 de dezembro de 2021): 1497. http://dx.doi.org/10.3390/vaccines9121497.
Texto completo da fonteYoo, Su Woong, Dinh-huy Nguyen, Suhyeon Park, Hyeri Lee, Chang-Moon Lee, Changho Lee e Jung-Joon Min. "Development of Dual-Scale Fluorescence Endoscopy for In Vivo Bacteria Imaging in an Orthotopic Mouse Colon Tumor Model". Applied Sciences 10, n.º 3 (24 de janeiro de 2020): 844. http://dx.doi.org/10.3390/app10030844.
Texto completo da fonteTeses / dissertações sobre o assunto "Bacteria in cancer therapy"
Cao, Siyu. "Designer bacteria as anti-cancer agents". Thesis, Griffith University, 2013. http://hdl.handle.net/10072/366498.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Traore, Mahama Aziz. "Bacteria-Enabled Autonomous Drug Delivery Systems: Design, Modeling, and Characterization of Transport and Sensing". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64326.
Texto completo da fontePh. D.
LEPORI, IRENE. "Optimization of attenuated Listeria monocytogenes cell wall chemical engineering to increase its anticancer vaccine activity and to use it as metastasis tracer". Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1072153.
Texto completo da fonteKandoth, Noufal. "Design, Synthesis and Characterization of Photoactivable Cyclodextrin-Based Nanoparticles for Multimodal Anticancer Therapy". Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1280.
Texto completo da fonteBabatunde, Oluwaseun Oyeniyi. "Exploring the potential of Rhodobacter sphaeroides in photodynamic therapy of tumors". Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1624793446693196.
Texto completo da fonteBabatunde, Oluwaseun Oyeniyi. "Exploring the potential of Rhodobacter sphaeroides in photodynamic therapy of tumors". Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1624793446693196.
Texto completo da fontePahle, Jessica. "Oncoleaking gene therapy: a new suicide approach for treatment of pancreatic cancer". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19298.
Texto completo da fonteBacterial toxins have evolved to an effective therapeutic option for cancer therapy and numerous studies demonstrated their antitumoral potential. The Clostridium perfringens enterotoxin (CPE), produced by the anaerobic Clostridium perfringes bacteria, is a pore-forming (oncoleaking) toxin, which binds to its receptors claudin-3 and -4 (Cldn3 / 4) and exerts a selective, receptor-dependent cytotoxicity. The transmembrane tight junction proteins Cldn3 and Cldn4 are known CPE receptors and are highly upregulated in several human epithelial cancers such as breast, colon, ovarian and pancreatic cancer. This study aimed at the evaluation of the potential of oncoleaking gene therapy using a non-viral translation optimized CPE vector (optCPE) as a new suicide approach for the treatment of Cldn3 / 4 overexpressing pancreatic cancer (PC) in vitro and in vivo. We demonstrated the successful in vitro use of optCPE gene transfer in a panel of human PC cells and more importantly patient derived PC xenograft (PDX) derived cells. We showed significant reduction of cell viability in all Cldn3 / 4 overexpressing PC cells after optCPE transfection. Furthermore a positive correlation between CPE cytotoxicity and level of claudin expression was shown. We revealed accessibility of CPE receptors for toxin binding as determining for optCPE mediated cytotoxicity. Since investigation of optCPE induced cell death mechanism was of particular interest, detailed analyses of apoptotic and necrotic key players were performed. By this, caspase dependent- and independent apoptosis and necrosis activation after gene transfer was demonstrated, which was dependent on amount of expressed optCPE and accessibility of Cldn. More importantly, this study demonstrated the applicability and antitumoral efficacy of optCPE gene therapy by the non-viral intratumoral jet-injection gene transfer in vivo in different luciferase-expressing CDX and PDX pancreatic cancer models. The animal experiments demonstrated the selective CPE mediated tumor growth inhibition, associated with reduced tumor viability and effective induction of tumor necrosis. This further corroborated the advantages of this novel oncoleaking strategy. With this gain of knowledge about our new oncoleaking concept of suicidal gene therapy and its mechanism of action, novel combinations with conventional therapies are possible to further improve therapeutic efficacy and to overcome resistance in pancreas carcinoma.
Broadway, Katherine Marie. "Novel Perspectives on the Utilization of Chemotactic Salmonella Typhimurium VNP20009 as an Anticancer Agent". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84898.
Texto completo da fontePh. D.
Liu, Ping. "Structural, Kinetic and Mutational Analysis of Two Bacterial Carboxylesterases". Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/biology_diss/26.
Texto completo da fonteAlmeida, Joana Raquel Santos Leite. "Multidrug resistant bacteria inactivation by photodynamic therapy". Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7295.
Texto completo da fonteThe development of antimicrobials promoted the idea that diseases provoked by microorganisms would diminish and would be reduced to the insignificancy to human health. However, the great amount of antibiotics used in human medicine and veterinary lead to a selection of pathogenic bacteria resistant to multiple antibiotics, being hospital wastewaters one of the most important sources of antibiotic-resistant organisms and antibiotic-resistance genes that are released into the environment. The significant increase in the development of multiple resistance mechanisms to antibiotics caused an increase in the research of alternative treatments that may be cost effective and human friendly. Antimicrobial photodynamic therapy (aPDT) is a quickly expanding technology for the treatment of diseases since it inactivates efficiently microorganisms, is cost effective and human safe. The general objective of this work was to assess the inactivation of 4 clinical multidrug-resistant bacteria by aPDT, using a tetracationic porphyrin (PS). The efficacy of aPDT was assessed in phosphate buffered saline (PBS) and in hospital residual water for each isolated bacterium and for the bacteria mixtured all together. The synergistic effect of aPDT and antibiotics (ampicillin and chloramphenicol) was also evaluated as well as the effect of sodium dodecylsulphate (SDS) on aPDT efficiency. The results show an efficient inactivation of multidrug-resistant bacteria in PBS using 5 μM of PS during 270 minutes in the presence of a light fluence rate of 40 W.m-2 (reduction of 6 to 8 log). In the residual water, the inactivation of the 4 bacteria was also efficient and the decrease in bacterial number starts even sooner. It was observed a faster decrease in bacterial number when aPDT was combined with the addition of ampicillin and chloramphenicol at concentrations of 16 and 32 μg mL-1 (MIC dose 32 μg mL-1 for both antibiotics). The efficiency of aPDT with a lower porphyrin concentration (2.5 μM) in the presence of antibiotics at MIC dose was not significantly different of that obtained when just the PS was used. The addition of SDS did not affect the efficiency of aPDT. The results of this study showed that aPDT inactivate efficiently multidrug-resistant bacteria, in hospital residual water the bacterial inactivation is faster than in PBS, the combination of antibiotics and aPDT acts more efficiently than the aPDT alone, but aPDT in the presence of SDS does not affect the efficiency of bacterial inactivation. In conclusion, aPDT is effective to combating microbial diseases transmitted by multidrug-resistant bacteria and can be used to increase the efficacy of classical antibiotics.
O desenvolvimento de agentes antimicrobianos levou a pensar que as doenças provocadas por microrganismos diminuiriam, tornando-se insignificantes para a saúde humana. No entanto, a grande quantidade de antibióticos utilizados na medicina humana e veterinária levaram a uma selecção de bactérias patogénicas resistentes a muitos antibióticos, sendo os efluentes hospitalares uma das fontes mais importantes de organismos resistentes a antibióticos e de genes de resistência a antibióticos que são lançados no meio ambiente. O aumento significativo no desenvolvimento de diversos mecanismos de resistência a antibióticos provocou um aumento na pesquisa de tratamentos alternativos que apresentem baixo custo e que não apresentem efeitos adversos para o homem. A terapia fotodinâmica antimicrobiana (aPDT) alternativa aos antibióticos para o tratamento de doenças, visto que inactiva eficientemente microrganismos, é barata e segura. O objectivo geral deste trabalho foi avaliar a inactivação de quatro isolados clínicos de bactérias multirresistentes pela aPDT, utilizando uma porfirina tetracatiónica (PS). A eficácia da aPDT foi avaliada em solução tampão (PBS) e em águas residuais hospitalares para cada bactéria isolada e para a mistura das 4 bactérias juntas. O efeito sinergético da aPDT e antibióticos (ampicilina e cloranfenicol) também foi avaliado, assim como o efeito do dodecilsulfato de sódio (SDS) sobre a eficiência da aPDT. Os resultados mostram uma inactivação eficiente de bactérias multirresistentes em PBS utilizando 5 μM de PS, durante 270 minutos na presença de 40 W.m-2 de luz (redução de 6-8 log). Na água residual hospitalar, a inactivação das 4 bactérias foi igualmente eficiente, começado mesmo a diminuição do número de bactérias mais cedo que em PBS. Foi observado uma redução mais acentuada no número de bactérias quando a aPDT foi combinada com a adição de ampicilina e cloranfenicol nas concentrações de 16 e 32 μg mL-1 (dose MIC de 32 μg mL-1 para ambos os antibióticos). A eficiência da aPDT com uma concentração inferior de PS (2.5 μM) na presença de antibióticos na dose MIC não foi significativamente diferente da obtida quando foi utilizado apenas a porfirina. A adição do SDS também não afectou a eficiência da aPDT. Os resultados deste estudo mostraram que a aPDT inactiva bactérias multirresistentes de forma eficiente; em água de esgoto hospitalar a inactivação bacteriana é mais rápida do que em PBS, a combinação de antibióticos e aPDT actua de forma mais eficiente do que a APDT sozinha, mas eficiência da aPDT na presença de SDS não é afectada. Em conclusão, aPDT é eficaz para combater doenças microbianas transmitidas por bactérias multi-resistentes e podem ser usados para aumentar a eficácia dos antibióticos clássicos.
Livros sobre o assunto "Bacteria in cancer therapy"
Hoffman, Robert M., ed. Bacterial Therapy of Cancer. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4.
Texto completo da fonteArsenio, Fialho, e Chakrabarty Ananda M. 1938-, eds. Emerging cancer therapy: Microbial approaches and biotechnological tools. Hoboken, N.J: Wiley, 2010.
Encontre o texto completo da fonte1915-, Crane John, ed. The cancer cure that worked: Fifty years of suppression. Toronto, Canada: Marcus Books, 1987.
Encontre o texto completo da fonteLynes, Barry. The cancer cure that worked!: Fifty years of suppression. Toronto, Canada: Marcus Books, 1987.
Encontre o texto completo da fonteKhan, Abdul Arif, ed. Bacteria and Cancer. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2585-0.
Texto completo da fonteKhan, Abdul Arif. Bacteria and Cancer. Dordrecht: Springer Netherlands, 2012.
Encontre o texto completo da fonteClark, Hulda Regehr. The cure for all cancers: Including over 100 case histories of persons cured : Plus two revolutionary electronic circuits, one to diagnose and monitor progress, the other to zap parasites and bacteria!. San Diego: New Century Press, 1993.
Encontre o texto completo da fonteChowdhury, Sreyan. Engineered Bacteria for Cancer Immunotherapy. [New York, N.Y.?]: [publisher not identified], 2021.
Encontre o texto completo da fonteBeger, Hans G., Markus Büchler, Ralph A. Reisfeld e Gregor Schulz, eds. Cancer Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73721-3.
Texto completo da fonteD’Alessandro, Natale, Enrico Mihich, Luciano Rausa, Haim Tapiero e Thomas R. Tritton, eds. Cancer Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84613-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Bacteria in cancer therapy"
Patyar, Sazal, Ajay Prakash e Bikash Medhi. "Bacteria as a Therapeutic Approach in Cancer Therapy". In Bacteria and Cancer, 185–208. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2585-0_8.
Texto completo da fonteSarotra, Pooja, e Bikash Medhi. "Use of Bacteria in Cancer Therapy". In Recent Results in Cancer Research, 111–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42934-2_8.
Texto completo da fonteMishra, Archana, e Vibhay Nath Tripathi. "Role of Bacteria in the Development of Cancer". In Colon Cancer Diagnosis and Therapy, 91–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64668-4_5.
Texto completo da fonteKumar, Pawan, Chitra Latka e Bhupesh Taneja. "Current Antifungal Therapy and Drug Resistance Mechanisms in Dermatophytes". In Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, 371–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48683-3_17.
Texto completo da fonteMego, Michal, Sona Ciernikova, Martin Razus, Lubos Drgona e Vladimir Zajac. "Probiotic Bacteria in Patients Treated with Chemotherapy and Radiation Therapy". In Critical Dietary Factors in Cancer Chemoprevention, 353–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21461-0_18.
Texto completo da fonteTraore, Mahama A., Ali Sahari e Bahareh Behkam. "Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy". In Targeted Drug Delivery, 25–35. New York, NY: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-8661-3_3.
Texto completo da fonteKamble, Swapnil C., Farhan F. Shaikh e Joyita Sarkar. "The Evolving Role of Nanoparticles in Bacteria Mediated Cancer Therapy". In Nanotechnology for Advances in Medical Microbiology, 331–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9916-3_14.
Texto completo da fonteJia, Li-Jun, e Zi-Chun Hua. "Development of Bacterial Vectors for Tumor-Targeted Gene Therapy". In Gene Therapy of Cancer, 131–54. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-561-9_7.
Texto completo da fonteHoffman, Robert M. "Future of Bacterial Therapy of Cancer". In Methods in Molecular Biology, 177–84. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4_15.
Texto completo da fonteLeschner, Sara, e Siegfried Weiss. "Noninvasive In Vivo Imaging to Follow Bacteria Engaged in Cancer Therapy". In Methods in Molecular Biology, 61–68. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3515-4_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bacteria in cancer therapy"
Lee, Wonjun, Jiin Park, Dongil Kang e Seungbeum Suh. "Reconstituting Fundamentals of Bacteria Mediated Cancer Therapy On A Chip". In 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2023. http://dx.doi.org/10.1109/mems49605.2023.10052432.
Texto completo da fonteKuo, Wen-Shuo, Ching-Ming Wu e Chen-Sheng Yeh. "Bacteria-Assisted Photothermal Therapy in Cancers Cells". In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456189.
Texto completo da fonteLin, Yu-Hsin, Chih-Ho Lai, Yu-An Chen, Yi-Ru Lai, Ho Lin e Jer-Tsong Hsieh. "Novel bacterial genotoxin-loaded nanoparticles for targeting therapy of radioresistant prostate cancer". In The 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecc2021-09230.
Texto completo da fonteBogush, Ya Yu, e N. V. Ikonnikova. "OVERVIEW OF THE PROPERTIES OF BACTERIOPHAGES AND THE POSSIBILITIES OF PHAGE THERAPY IN THE MODERN WORLD". In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-104-107.
Texto completo da fonteAckerley, David F., Janine N. Copp, Elsie M. Williams, Alexandra M. Mowday, Christopher P. Guise, Gareth A. Prosser, Sophie P. Syddall, Jeff B. Smaill e Adam V. Patterson. "Abstract B88: Discovery, characterization, and engineering of bacterial nitroreductases for gene-directed enzyme prodrug therapy." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-b88.
Texto completo da fonteRodiansyah, Achmad, Marselina Irasonia Tan e Husna Nugrahapraja. "Construction, Cloning, and Overexpression of Staphylococcal Enterotoxin B Gene Synthetic (SEBsyn) in pET-28a(+): Pre-development Bacterial-Toxin Therapy for Cancer". In 7th International Conference on Biological Science (ICBS 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/absr.k.220406.065.
Texto completo da fonteAbreu, Thiago Martins de, Arthur Gomes Pidde, Pedro Henrique de Ávila Perillo, Silvaleide Ataides Assunção, Ianca Leandra Santos e Débora Sara de Almeida Cardoso. "DELAY IN THE DIAGNOSIS OF INVASIVE DUCTAL CARCINOMA DUE TO AN INFECTIOUS MASTITIS: CASE REPORT". In Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2067.
Texto completo da fontePezo, Rossanna C., Andrea Eisen, Sonal Gandhi, Ellen Warner, Katarzyna Jerzak, Maureen Trudeau e Arun Seth. "Abstract OT-09-04: Analysis of genomic alterations in cell free DNA and gut bacterial diversity in metastatic breast cancer (MBC) patients on endocrine therapy: A pilot study". In Abstracts: 2020 San Antonio Breast Cancer Virtual Symposium; December 8-11, 2020; San Antonio, Texas. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.sabcs20-ot-09-04.
Texto completo da fonteGuerrero-Preston, Rafael E., James Robert White, Filipa Godoy-Vitorino, Herminio Gonzalez, Arnold Rodríguez-Hilario, Kelvin Navarro, Gustavo A. Miranda-Carboni et al. "Abstract 1018: High-resolution microbiome profiling and genome wide arrays uncover bacteria driven alterations of oncogenic and immune pathways in head and neck cancer patients treated with surgery, chemo-radiation and PD-1 checkpoint blockade therapy". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1018.
Texto completo da fonteKang, Simook, e Baek-Il Kim. "The susceptibility of oral bacteria to antibacterial photodynamic therapy". In Photonic Diagnosis, Monitoring, Prevention, and Treatment of Infections and Inflammatory Diseases 2019, editado por Tianhong Dai, Mei X. Wu e Jürgen Popp. SPIE, 2019. http://dx.doi.org/10.1117/12.2507675.
Texto completo da fonteRelatórios de organizações sobre o assunto "Bacteria in cancer therapy"
Clarke, Robert S. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junho de 2005. http://dx.doi.org/10.21236/ada443230.
Texto completo da fonteClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junho de 2008. http://dx.doi.org/10.21236/ada492475.
Texto completo da fonteGallion, Holly. Advances in Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, junho de 2010. http://dx.doi.org/10.21236/ada535545.
Texto completo da fonteGallion, Holly. Advances in Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, junho de 2009. http://dx.doi.org/10.21236/ada510052.
Texto completo da fonteMa, Hong. Advances In Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2011. http://dx.doi.org/10.21236/ada562073.
Texto completo da fonteLis, Darrell. Advances in Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada573097.
Texto completo da fonteTung, Ching-Hsuan. Protease Mediated Anti-Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada458446.
Texto completo da fonteClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junho de 2006. http://dx.doi.org/10.21236/ada463407.
Texto completo da fonteClarke, Robert. Endocrine Therapy of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, junho de 2007. http://dx.doi.org/10.21236/ada472777.
Texto completo da fontePitha-Rowe, Paula Marie. Ribozyme-Mediated Breast Cancer Gene Therapy. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2000. http://dx.doi.org/10.21236/ada394199.
Texto completo da fonte