Literatura científica selecionada sobre o tema "Bio-modelling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Bio-modelling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Bio-modelling"
Davia, Miguel, Antonio Jimeno-Morenilla e Faustino Salas. "Footwear bio-modelling: An industrial approach". Computer-Aided Design 45, n.º 12 (dezembro de 2013): 1575–90. http://dx.doi.org/10.1016/j.cad.2013.08.006.
Texto completo da fonteCiocchetta, Federica, e Maria Luisa Guerriero. "Modelling Biological Compartments in Bio-PEPA". Electronic Notes in Theoretical Computer Science 227 (janeiro de 2009): 77–95. http://dx.doi.org/10.1016/j.entcs.2008.12.105.
Texto completo da fonteWodołażski, Artur, e Adam Smoliński. "Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling". Processes 10, n.º 10 (20 de setembro de 2022): 1907. http://dx.doi.org/10.3390/pr10101907.
Texto completo da fonteUrama, K. C., C. F. Dilks, S. M. Dunn e R. C. Ferrier. "Socio-economic and bio-physical modelling of diffuse pollution: closing the gaps". River Systems 17, n.º 1-2 (28 de julho de 2006): 175–99. http://dx.doi.org/10.1127/lr/17/2006/175.
Texto completo da fonteOgundele, O. S., B. K. Alese e O. O. Mathew. "A Bio-Inspired Concept for Information Security Modelling". International Journal of Green Computing 1, n.º 1 (janeiro de 2010): 53–67. http://dx.doi.org/10.4018/jgc.2010010106.
Texto completo da fonteNasir, Arooj, Dumitru Baleanu, Ali Raza, Pervez Anwar, Nauman Ahmed, Muhammad Rafiq e Tahir Nawaz Cheema. "Bio-Inspired Modelling of Disease Through Delayed Strategies". Computers, Materials & Continua 73, n.º 3 (2022): 5717–34. http://dx.doi.org/10.32604/cmc.2022.031879.
Texto completo da fonteKabbej, Marouane, Valérie Guillard, Hélène Angellier-Coussy, Caroline Wolf, Nathalie Gontard e Sébastien Gaucel. "3D Modelling of Mass Transfer into Bio-Composite". Polymers 13, n.º 14 (9 de julho de 2021): 2257. http://dx.doi.org/10.3390/polym13142257.
Texto completo da fonteLawrance, Ani, Mani Veera Santhoshi Gollapalli, S. Savithri, Ajit Haridas e A. Arunagiri. "Modelling and simulation of food waste bio-drying". Chemosphere 294 (maio de 2022): 133711. http://dx.doi.org/10.1016/j.chemosphere.2022.133711.
Texto completo da fonteKumar, Y. Ravi. "Bio-Modelling Using Rapid Prototyping by Fused Deposition". Advanced Materials Research 488-489 (março de 2012): 1021–25. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1021.
Texto completo da fonteDemongeot, Jacques, Florence Thuderoz, Thierry Pascal Baum, François Berger e Olivier Cohen. "Bio-array images processing and genetic networks modelling". Comptes Rendus Biologies 326, n.º 5 (maio de 2003): 487–500. http://dx.doi.org/10.1016/s1631-0691(03)00114-8.
Texto completo da fonteTeses / dissertações sobre o assunto "Bio-modelling"
Cousin, Thibault. "Synthesis and molecular modelling of bio-based polyamides". Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00952848.
Texto completo da fonteMoscardo, Marco <1989>. "Modelling trophic network with PEPA and Bio-PEPA". Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5973.
Texto completo da fonteDennison, Catherine Lindsay. "Modelling and monitoring of a Herhof bio-degradation system". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0007/MQ33218.pdf.
Texto completo da fonteBermudez, Contreras Edgar. "Modelling active bio-inspired object recognition in autonomous mobile agents". Thesis, University of Sussex, 2010. http://sro.sussex.ac.uk/id/eprint/2364/.
Texto completo da fonteGrimaud, Christel. "Logical modelling of reasoning and learning : a bio-inspired approach". Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30026/document.
Texto completo da fonteIn this dissertation, we take inspiration in cognitive sciences to address the issue of the logical modelling of reasoning and learning. Our main thrust is that to address these issues one should take inspiration in the way natural agents (i.e., humans and animals) actually proceed when they draw inferences and learn. Considering that reasoning incorporates a wide range of cognitive abilities, and that it would thus be unreasonable to hope to model the whole of human’s reasoning all at once, we focus here on a very basic kind of inferences that, we argue, can be considered as the primary core of reasoning in all brained animals. We identify a plausible underlying process for these inferences, first at the mental level of description and then at the neural level, and we develop a family of logical models that allow to simulate it. Then we tackle the issue of providing sets of rules to characterise the inference relations induced by these models. These rules are a by-product of the posited process, and should thus be seen as rules that, according to the model, result from the very functioning of brains. Finally we examine the learning processes attached to the considered inferences, and we show how to they can be modelled within our framework. To conclude we briefly discuss possible further developments of the framework, and in particular we give indications about how the modelling of some other cognitive abilities might be envisioned
Shirinskaya, Anna. "Physical modelling of bio sensors based on Organic Electrochemical Transistors". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX055/document.
Texto completo da fonteOrganic Electrochemical Transistors are widely used as transducers for sensors in bioelectronics devices. Although these devices have been extensively studied in the last years, there is a lack of fundamental understanding of their working mechanism, especially concerning the de-doping mechanism.This thesis is dedicated to Organic Electrochemical Transistors modelling. First of all, a numerical steady state model was established. This model allows implementing the Poisson-Boltzmann, Nernst-Planck and Nernst equations to describe the de-doping process in the conductive PEDOT:PSS layer, and ions and holes distribution in the device. Two numerical models were proposed. In the first, Local Neutrality model, the assumption of electrolyte ions trapping in PEDOT:PSS layer was taken into consideration, thus the local neutrality was preserved. In the second model the ions were allowed to move freely under applied electric field inside conductive polymer layer, thus only global electroneutrality was kept. It was experimentally proven that the Global Neutrality numerical model is valid to explain the global physics of the device, the origin and the result of the de-doping process. The transition from totally numerical model to analytical model was performed by fitting the parametric analytical Boltzmann logistic function to numerically calculated conductivity profiles. As a result, an analytical equation for the Drain current dependence on applied voltage was derived. By fitting this equation to experimentally measured Drain current- applied voltage profiles, we could obtain the maximum conductivity of a fully doped PEDOT:PSS layer. The maximum conductivity is shown to be dependent not only on the material, but also on device channel size. Using the maximum conductivity value together with the Conventional Semiconductor model it is possible to extract the other parameters for the full description of the OECT: intrinsic charge carrier density, initial holes density, initial PSS- concentration and conductive polymer layer volumetric capacitance. Having a tool to make easy parameters extraction and characterization of any OECT, permits not only to increase the level of device description, but most importantly to highlight the correlation between external and internal device parameters.Finally it is shown how to make the whole description of the real OECT device, all the models were validated by fitting the modeled and experimentally measured data profiles.As a result, not only the purely theoretical model was presented in this thesis to describe the device physics, but also the prominent step was made on simple real device characterization
Smith, David Everett. "Modelling and controlling a bio-inspired flapping-wing micro aerial vehicle". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43577.
Texto completo da fonteWall, Julie. "Post-cochlear auditory modelling for sound localisation using bio-inspired techniques". Thesis, Ulster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525140.
Texto completo da fonteRamraj, Anitha. "Computational modelling of intermolecular interactions in bio, organic and nano molecules". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/computational-modelling-of-intermolecular-interactions-in-bio-organic-and-nano-molecules(7a41f3cd-1847-4ccf-8853-5fd8be2a2c15).html.
Texto completo da fonteBuoso, Stefano. "High-fidelity modelling and feedback control of bio-inspired membrane wings". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/32832.
Texto completo da fonteLivros sobre o assunto "Bio-modelling"
Basualdo, Marta S., Rachid Outbib e Diego Feroldi. PEM fuel cells with bio-fuel processor systems: A multidisciplinar study of modelling, simulation, fault diagnosis and advanced control. London: Springer, 2010.
Encontre o texto completo da fonteJ, Naidoo Kevin, e Royal Society of Chemistry (Great Britain), eds. Modelling molecular structure and reactivity in biological systems. Cambridge: Royal Society of Chemistry, 2006.
Encontre o texto completo da fonteClimate under cover: Digital dynamic simulation in plant bio-engineering. Dordrecht: Kluwer Academic Publishers, 1993.
Encontre o texto completo da fonteHuman Modelling for Bio-Inspired Robotics. Elsevier, 2017. http://dx.doi.org/10.1016/c2014-0-02964-4.
Texto completo da fonteMishra, Deepak R., Igor Ogashawara e Anatoly Abraham Gitelson. Bio-Optical Modelling and Remote Sensing of Inland Waters. Elsevier Science & Technology Books, 2017.
Encontre o texto completo da fonteUeda, Jun, e Yuichi Kurita. Human Modelling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies. Elsevier Science & Technology Books, 2016.
Encontre o texto completo da fonteBoon, Mieke. Theoretical and experimental methods in the modelling of bio-oxidation kinetics of sulphide Minerals. Mieke Boon, 1996.
Encontre o texto completo da fonteBasualdo, Marta S., Rachid Outbib e Diego Feroldi. PEM Fuel Cells with Bio-Ethanol Processor Systems: A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control. Springer, 2013.
Encontre o texto completo da fonteASME. Print Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems Volume 2: Modelling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting. American Society of Mechanical Engineers, The, 2016.
Encontre o texto completo da fonteTakakura, Tadashi. Climate Under Cover: Digital Dynamic Simulation in Plant Bio-Engineering. Springer, 1993.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Bio-modelling"
Chhatre, Sunil. "Modelling Approaches for Bio-Manufacturing Operations". In Advances in Biochemical Engineering/Biotechnology, 85–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/10_2012_170.
Texto completo da fonteTang, Dunbing, Lei Wang, Wenbin Gu, Weidong Yuan e Dingshan Tang. "Modelling of Bio-inspired Manufacturing System". In Advances in Intelligent and Soft Computing, 1165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10430-5_89.
Texto completo da fonteGheorghe, Marian, Ioanna Stamatopoulou, Mike Holcombe e Petros Kefalas. "Modelling Dynamically Organised Colonies of Bio-entities". In Lecture Notes in Computer Science, 207–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527800_17.
Texto completo da fonteMassink, Mieke, Diego Latella, Andrea Bracciali e Jane Hillston. "Modelling Non-linear Crowd Dynamics in Bio-PEPA". In Fundamental Approaches to Software Engineering, 96–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19811-3_8.
Texto completo da fonteFass, Didier, e Franck Gechter. "Towards a Theory for Bio $$-$$ - Cyber Physical Systems Modelling". In Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk Management: Human Modeling, 245–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21073-5_25.
Texto completo da fonteWarby, Michael K., e John R. Whiteman. "Modelling of Thermoforming Processes for Bio-Degradable Thermoplastic Materials". In UK Success Stories in Industrial Mathematics, 205–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25454-8_26.
Texto completo da fontePatra, Asesh, Meet Patel, Priyabrata Chattopadhyay, Anubhab Majumder e Sanjoy Kumar Ghoshal. "A Bio-inspired Climbing Robot: Dynamic Modelling and Prototype Development". In Lecture Notes in Mechanical Engineering, 191–209. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1071-7_17.
Texto completo da fonteSivagnanamani, G. S., P. Ramesh, Mohit Hemanth Kumar e V. Arul Mozhi Selvan. "Fracture Analysis of Fused Deposition Modelling of Bio-composite Filaments". In Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites, 71–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0642-7_4.
Texto completo da fonteMavelli, Fabio, Emiliano Altamura e Pasquale Stano. "Giant Vesicles as Compartmentalized Bio-reactors: A 3D Modelling Approach". In Communications in Computer and Information Science, 184–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32695-5_17.
Texto completo da fonteLi, Cai, Robert Lowe e Tom Ziemke. "Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture". In From Animals to Animats 12, 156–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33093-3_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Bio-modelling"
Massey, Roslyn, Rana Amache, Siziwe Bebe e Ravi Prakash. "A Comprehensive Modelling Approach for Bio-EDLC systems". In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278742.
Texto completo da fonte"Modelling volatility spillovers for bio-ethanol, sugarcane and corn". In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.e3.chang.
Texto completo da fonteTietz, U., C. C. Berndt e K. P. Schmitz. "Microstructural Modelling and Performance Simulation of Engineered Bio-Composites". In ITSC2010, editado por B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima e G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0516.
Texto completo da fonteVasiliadou, Ioanna A., Dimitris V. Vayenas, Constantinos V. Chrysikopoulos, Theodore E. Simos, George Psihoyios, Ch Tsitouras e Zacharias Anastassi. "Mathematical Modelling of Bacterial Populations in Bio-remediation Processes". In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637898.
Texto completo da fonteKeskin, Ali Umit, e Feride Sermin Utku. "Rheological Modelling of Bio-fluids Using Moving Coil Transducers". In The 2nd World Congress on Electrical Engineering and Computer Systems and Science. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icbes16.132.
Texto completo da fonteLisnichenko, Marina, e Stanislav Protasov. "BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION". In Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Texto completo da fonteMao, Xiaomin, e Haizhu Hu. "Modelling Bio-Enhanced TCE DNAPL Elimination in a Soil Column". In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516966.
Texto completo da fonteDonzella, V., S. Talebi Fard e L. Chrostowski. "Modelling of asymmetric slot racetracks for improved bio-sensors performance". In 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2013. http://dx.doi.org/10.1109/nusod.2013.6633106.
Texto completo da fonteMorales, Manuel E., e Stephane Lhuillery. "Modelling Circularity in Bio-based Economy Through Territorial System Dynamics". In 2021 IEEE European Technology and Engineering Management Summit (E-TEMS). IEEE, 2021. http://dx.doi.org/10.1109/e-tems51171.2021.9524890.
Texto completo da fonteYe e Choy. "Modelling of the Pulmonary Circulation via Electrical Bio-Impedance Technique". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590117.
Texto completo da fonteRelatórios de organizações sobre o assunto "Bio-modelling"
Rural NEET Youth Policy Brief - Youth and Mobility in EU Rural Areas. COST Action 18213: Rural NEET Youth Network: Modeling the risks underlying rural NEETs social exclusion, maio de 2022. http://dx.doi.org/10.15847/cisrnyn.neetpbym.2022.05.
Texto completo da fonteAfrican Open Science Platform Part 1: Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Texto completo da fonte