Literatura científica selecionada sobre o tema "Biomechanical energy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biomechanical energy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biomechanical energy"
IVANCEVIC, TIJANA T. "JET-RICCI GEOMETRY OF TIME-DEPENDENT HUMAN BIOMECHANICS". International Journal of Biomathematics 03, n.º 01 (março de 2010): 79–91. http://dx.doi.org/10.1142/s179352451000088x.
Texto completo da fonteWan, Linwei, Haomin Zheng e Deyuan Kong. "Methodological innovation in government environmental auditing through biomechanical principles: An approach to environmental impact performance evaluation". Molecular & Cellular Biomechanics 22, n.º 4 (20 de março de 2025): 1704. https://doi.org/10.62617/mcb1704.
Texto completo da fontePost, Andrew, T. Blaine Hoshizaki, Michael D. Gilchrist, David Koncan, Lauren Dawson, Wesley Chen, Andrée-Anne Ledoux, Roger Zemek e _. _. "A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction". Journal of Neurosurgery: Pediatrics 19, n.º 4 (abril de 2017): 502–10. http://dx.doi.org/10.3171/2016.10.peds16449.
Texto completo da fonteZhang, Shuya. "Biomechanics-inspired utilization 5G multimedia for intelligent title recommendations in low carbon smart libraries through collaborative filtering algorithms". Molecular & Cellular Biomechanics 22, n.º 4 (17 de março de 2025): 925. https://doi.org/10.62617/mcb925.
Texto completo da fonteYu, Bo. "Practical research on wetland ecosystem services and traditional plant protection in the biosphere reserves of Yunnan: A biomechanics perspective". Molecular & Cellular Biomechanics 22, n.º 3 (13 de fevereiro de 2025): 817. https://doi.org/10.62617/mcb817.
Texto completo da fonteCos, Ignasi, Nicolas Bélanger e Paul Cisek. "The influence of predicted arm biomechanics on decision making". Journal of Neurophysiology 105, n.º 6 (junho de 2011): 3022–33. http://dx.doi.org/10.1152/jn.00975.2010.
Texto completo da fonteLiu, Mingyi, Cherice Hill, Robin Queen e Lei Zuo. "A lightweight wearable biomechanical energy harvester". Smart Materials and Structures 30, n.º 7 (16 de junho de 2021): 075032. http://dx.doi.org/10.1088/1361-665x/ac03c3.
Texto completo da fonteGao, Jinxia, e Tian Zhou. "Biomechanical and cellular factors affecting the speed and accuracy of tennis serve". Molecular & Cellular Biomechanics 22, n.º 4 (19 de março de 2025): 1275. https://doi.org/10.62617/mcb1275.
Texto completo da fonteLv, Xiaoping. "Innovation in classroom interaction mode of business English teaching driven by biomechanics and data analysis". Molecular & Cellular Biomechanics 22, n.º 4 (5 de março de 2025): 1626. https://doi.org/10.62617/mcb1626.
Texto completo da fonteZhang, Yunshu, e Yue Wei. "Low-carbon transformation and ecological safeguarding in the Yellow River Basin: Integrating biomechanical and biological insights". Molecular & Cellular Biomechanics 21, n.º 2 (6 de novembro de 2024): 408. http://dx.doi.org/10.62617/mcb.v21i2.408.
Texto completo da fonteTeses / dissertações sobre o assunto "Biomechanical energy"
Denault, Sebastian Ramirez. "Evaluation of smart-fabric approach to biomechanical energy harvesting". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92178.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 35-37).
This thesis evaluates the proposed use of piezoelectric energy harvesting methods as a power source for light-up sneakers. Light-up sneakers currently marketed for purposes of pedestrian visibility and personal fashion are powered by primary or secondary batteries; maintenance requirements could potentially be reduced or eliminated by introducing a renewable power source drawn from the wearer's body. A test was made to determine the possible power levels available from piezoelectric fiber elements mounted on the shoe upper; approximately 10nW of power was developed during walking. In addition to performance in terms of power generated, cost, durability, manufacturability, and user impact also need to be considered before applying this technology.
by Sebastian Ramirez Denault.
S.B.
Andersson, Erik. "PHYSIOLOGICAL AND BIOMECHANICAL FACTORS DETERMINING CROSS-COUNTRY SKIING PERFORMANCE". Doctoral thesis, Mittuniversitetet, Avdelningen för hälsovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-27898.
Texto completo da fonteVid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 5 inskickat
At the time of the doctoral defence the following papers were unpublished: paper 5 submitted
Horstman, Christopher Larry. "BIOMECHANICAL AND METABOLIC CHANGES WITHIN RABBIT ARTICULAR CARTILAGE FOLLOWING TREATMENT WITH RADIOFREQUENCY ENERGY". MSSTATE, 2005. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11112005-081324/.
Texto completo da fonteDixon, Stacey A. "Biomechanical analysis of coronary arteries using a complementary energy model and designed experiments". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17599.
Texto completo da fonteSouza, Campos Flavio Ballerini. "Performance assessment of prosthetic heart valves using orifice area formulae and the energy index method". FIU Digital Commons, 1993. http://digitalcommons.fiu.edu/etd/2432.
Texto completo da fonteGonjo, Tomohiro. "A comparison of biomechanical and physiological characteristics between front crawl and back crawl". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25462.
Texto completo da fonteEng, Carolyn Margaret. "An Anatomical and Biomechanical Study of the Human Iliotibial Band's Role in Elastic Energy Storage". Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11621.
Texto completo da fonteHuman Evolutionary Biology
Hall, Michael G. "Biomechanical and energy analysis of the ischial containment and quadrilateral sockets for the trans femoral amputee". Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248527.
Texto completo da fonteMarconi, Francesco. "Analysis of biomechanical in vitro tests on the human ribs". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18581/.
Texto completo da fonteFernandes, Fábio António Oliveira. "Biomechanical analysis of helmeted head impacts: novel materials and geometries". Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21227.
Texto completo da fonteA cortiça é um material celular natural capaz de suster quantidades consideráveis de energia. Estas características tornam este material ideal para determinadas aplicações como a proteção de impactos. Considerando equipamentos de segurança passiva pessoal, os materiais sintéticos são hoje em dia os mais utilizados, em particular o poliestireno expandido. Este também é capaz de absorver razoáveis quantidades de energia via deformação permanentemente. Por outro lado, a cortiça além de ser um material natural, é capaz de recuperar grande parte da sua forma após deformada, uma característica desejada em aplicações com multi-impacto. Neste trabalho é efetuada uma avaliação da aplicabilidade da cortiça em equipamentos de segurança pessoal, especificamente capacetes. Vários tipos de cortiça aglomerada foram caracterizados experimentalmente. Impactos foram simulados numericamente para avaliar a validade dos modelos constitutivos e as propriedades utilizadas para simular o comportamento da cortiça. Capacetes foram selecionados como caso de estudo, dado as energias de impacto e repetibilidade de impactos a que estes podem ser sujeitos. Para avaliar os capacetes de um ponto de vista biomecânico, um modelo de cabeça humana em elementos finitos foi desenvolvido. Este foi validado de acordo com testes em cadáveres existentes na literatura. Dois modelos de capacete foram modelados. Um modelo de um capacete rodoviário feito de materiais sintéticos, o qual se encontra disponível no mercado e aprovado pelas principais normas de segurança de capacetes, que serve de referência. Este foi validado de acordo com os impactos da norma. Após validado, este foi avaliado com o modelo de cabeça humana em elementos finitos e uma análise ao risco de existência de lesões foi efetuado. Com este mesmo capacete, foi concluído que para incorporar cortiça aglomerada, a espessura teria de ser reduzida. Então um novo modelo de capacete foi desenvolvido, sendo este uma espécie de modelo genérico com espessuras constantes. Um estudo paramétrico foi realizado, variando a espessura do capacete e submetendo o mesmo a duplos impactos. Os resultados destes impactos e da análise com o modelo de cabeça indicaram uma espessura ótima de 40 mm de cortiça aglomerada, com a qual o capacete tem uma melhor resposta a vários impactos do que se feito de poliestireno expandido.
Cork is a natural cellular material capable of withstanding considerable amounts of energy. These features make it an ideal material for some applications, such as impact protection. Regarding personal safety gear, synthetic materials, particularly expanded polystyrene, are typically used. These are also able to absorb reasonable amounts of energy by deforming permanently. On the other hand, in addition to cork being a natural material, it recovers almost entirely after deformation, which is a desired characteristic in multi-impact applications. In this work, the applicability of agglomerated cork in personal safety gear, specifically helmets, is analysed. Different types of agglomerated cork were experimentally characterized. These experiments were simulated in order to assess the validity of the constitutive models used to replicate cork's mechanical behaviour. In order to assess the helmets from a biomechanical point of view, a finite element human head model was developed. This head model was validated by simulating the experiments performed on cadavers available in the literature. Two helmet models were developed. One of a motorcycle helmet made of synthetic materials, which is available on the market and certified by the main motorcycle helmets safety standards, being used as reference. This helmet model was validated against the impacts performed by the European standard. After validated, this helmet model was analysed with the human head model, by assessing its head injury risk. With this helmet, it was concluded that a thinner helmet made of agglomerated cork might perform better. Thus, a new helmet model with a generic geometry and a constant thickness was developed. Several versions of it were created by varying the thickness and subjecting them to double impacts. The results from these impacts and the analyses carried out with the finite element head model indicated an optimal thickness of 40 mm, with which the agglomerated cork helmet performed better than the one made of expanded polystyrene.
Livros sobre o assunto "Biomechanical energy"
Whitehouse, D. A. An investigation into the energy expenditure and biomechanics of two sailing postures. Cardiff: S.G.I.H.E., 1985.
Encontre o texto completo da fonteJohn, Zumerchik, ed. Encyclopedia of sports science. New York: Macmillan Library Reference USA, 1997.
Encontre o texto completo da fonteWeiselfish-Giammatteo, Sharon. Integrative manual therapy for biomechanics: Application of muscle energy and 'beyond' technique : treatment of the spine, ribs, and extremities. Berkeley, Calif: North Atlantic Books, 2003.
Encontre o texto completo da fonteBiomechanical alterations and energy expenditure during walking and running with hand weights. 1988.
Encontre o texto completo da fonteBiomechanical alterations and energy expenditure during walking and running with hand weights. 1987.
Encontre o texto completo da fonteEng, Carolyn Margaret. An Anatomical and Biomechanical Study of the Human Iliotibial Band's Role in Elastic Energy Storage. 2014.
Encontre o texto completo da fontePrice, Kathleen Marie. A biomechanical and physiological analysis of efficiency during different running paces. 1992.
Encontre o texto completo da fonteA biomechanical and physiological analysis of efficiency during different running paces. 1992.
Encontre o texto completo da fontePrice, Kathleen Marie. A biomechanical and physiological analysis of efficiency during different running paces. 1992.
Encontre o texto completo da fonteBiewener, Andrew A., e Shelia N. Patek, eds. Muscles and Skeletons. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198743156.003.0002.
Texto completo da fonteCapítulos de livros sobre o assunto "Biomechanical energy"
Loret, Benjamin, e Fernando M. F. Simões. "Transfers of mass, momentum, and energy". In Biomechanical Aspects of Soft Tissues, 313–43. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315110783-11.
Texto completo da fonteMeena, Ankit, T. Jagadeesha, Manoj Nikam, Seung-Bok Choi e Vikram G. Kamble. "Design of Energy Harvesting Mechanism for Walking Applications". In Advanced Materials for Biomechanical Applications, 273–301. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003286806-15.
Texto completo da fonteRibhu, Nazmus Sakib, M. K. A. Ahamed Khan, Manickam Ramasamy, Chun Kit Ang, Lim Wei Hong, Duc Chung Tran, Sridevi e Deisy. "Investigation of Gait and Biomechanical Motion for Developing Energy Harvesting System". In Lecture Notes in Networks and Systems, 151–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4355-9_13.
Texto completo da fonteKriechbaumer, A., M. P. Trejo Ramírez, U. Mittag, M. Itskov, J. M. López Ramírez e J. Rittweger. "Design, Development and Validation of an Artificial Muscle Biomechanical Rig (AMBR) for Finite Element Model Validation". In Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, 319–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28513-9_44.
Texto completo da fonteLucas, George L., Francis W. Cooke e Elizabeth A. Friis. "Work and Energy Concepts". In A Primer of Biomechanics, 89–97. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8487-6_7.
Texto completo da fonteTanaka, Masao, Shigeo Wada e Masanori Nakamura. "Spring Network Modeling Based on the Minimum Energy Concept". In Computational Biomechanics, 141–79. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54073-1_4.
Texto completo da fonteSchreiner, K. E. "Dissipation of Mechanical Energy in Muscles". In Biomechanics: Current Interdisciplinary Research, 635–38. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7432-9_95.
Texto completo da fontedi Prampero, Pietro E., e Cristian Osgnach. "The Energy Cost of Sprint Running and the Energy Balance of Current World Records from 100 to 5000 m". In Biomechanics of Training and Testing, 269–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-05633-3_12.
Texto completo da fonteSemegn, Alehegn Melesse, Bereket Haile Woldegiorgis e Zerihun Wondimu Lemessa. "Recent Developments in Biomechanics-Based Prediction of Musculoskeletal Disorders: A Review". In Green Energy and Technology, 155–67. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-77339-6_10.
Texto completo da fonteCarter, D. R., D. P. Fyhrie, R. Whalen, T. E. Orr, D. J. Schurman e D. J. Rapperport. "Control of Chondro-Osseous Skeletal Biology by Mechanical Energy". In Biomechanics: Basic and Applied Research, 219–24. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_26.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biomechanical energy"
Chan, Hugo Hung-Tin, Haisu Liao, Xuan Zhao, Junrui Liang, Wei-Hsin Liao, Xinyu Wu e Fei Gao. "A smart wearable device for capturing biomechanical energy from human knee motion". In 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 387–92. IEEE, 2024. http://dx.doi.org/10.1109/aim55361.2024.10637186.
Texto completo da fonteMurugan, Muthuvel, Ala Tabiei e Gregory Hiemenz. "Crash Dynamic Model for Rotorcraft Adaptive Seat Energy Absorber Evaluation". In Vertical Flight Society 71st Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10143.
Texto completo da fonteDonelan, J. Maxwell, Veronica Naing e Qingguo Li. "Biomechanical energy harvesting". In 2009 IEEE Radio and Wireless Symposium (RWS). IEEE, 2009. http://dx.doi.org/10.1109/rws.2009.4957269.
Texto completo da fonteLi, Q., V. Naing, J. A. Hoffer, D. J. Weber, A. D. Kuo e J. M. Donelan. "Biomechanical energy harvesting: Apparatus and method". In 2008 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008. http://dx.doi.org/10.1109/robot.2008.4543774.
Texto completo da fonteGetman, I. A., S. V. Podlesnij e D. Yu Mikhieienko. "Energy conservation law in biomechanical systems". In NEW DEVELOPMENT AREAS OF DIGITALIZATION AT THE BEGINNING OF THE THIRD MILLENNIUM. Baltija Publishing, 2021. http://dx.doi.org/10.30525/978-9934-26-172-5-16.
Texto completo da fonteSinatra, Francy L., Stephanie L. Carey e Rajiv Dubey. "Biomechanical Model Representing Energy Storing Prosthetic Feet". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38707.
Texto completo da fonteApgar, Collier, George Schmidt, Jacob Wild, Zachary Patterson, David Hieronymous, Paul Revesman e Jacquelyn Nagel. "Biomechanical energy harvesting using a knee mounted generator". In 2016 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 2016. http://dx.doi.org/10.1109/sieds.2016.7489278.
Texto completo da fonteFadhel, Yosra Ben, Sana Ktata, Salem Rahmani e Kamal Al-Haddad. "Energy management circuit from internal biomechanical energy harvester to power a pacemaker". In 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). IEEE, 2022. http://dx.doi.org/10.1109/cistem55808.2022.10043879.
Texto completo da fonteCheng, Wing Ling, Chao Chen e Wei-Hsin Liao. "Design considerations in medium-power biomechanical energy harvesting circuits". In 2014 IEEE International Conference on Information and Automation (ICIA). IEEE, 2014. http://dx.doi.org/10.1109/icinfa.2014.6932758.
Texto completo da fonteShamsuddin, Saeed Ahmed Khan, Abdul Qadir Rahimoon, Ahsanullah Abro, Mehran Ali, Izhar Hussain e Farooq Ahmed. "Biomechanical Energy Harvesting by Single Electrode-based Triboelectric Nanogenerator". In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2019. http://dx.doi.org/10.1109/icomet.2019.8673493.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biomechanical energy"
Zhang, Qiming, e Heath Hogmann. Harvesting Electric Energy During Walking With a Backpack: Physiological, Ergonomic, Biomechanical, and Electromechanical Materials, Devices, and System Considerations. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada428873.
Texto completo da fonteQuillen, William S., e M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple & Complex Mobility Activities. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2012. http://dx.doi.org/10.21236/ada574692.
Texto completo da fonteQuillen, William S., e M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple & Complex Mobility Activities. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2013. http://dx.doi.org/10.21236/ada601342.
Texto completo da fonteQuillen, William S., e M. J. Highsmith. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing-Return Prosthetic Feet During Simple and Complex Mobility Activities. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2014. http://dx.doi.org/10.21236/ada615208.
Texto completo da fonteGoel, Dr Divanshu, e Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, fevereiro de 2023. http://dx.doi.org/10.36106/ijar/1505336.
Texto completo da fonte