Artigos de revistas sobre o tema "Biomechanical energy"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Biomechanical energy".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
IVANCEVIC, TIJANA T. "JET-RICCI GEOMETRY OF TIME-DEPENDENT HUMAN BIOMECHANICS". International Journal of Biomathematics 03, n.º 01 (março de 2010): 79–91. http://dx.doi.org/10.1142/s179352451000088x.
Texto completo da fonteWan, Linwei, Haomin Zheng e Deyuan Kong. "Methodological innovation in government environmental auditing through biomechanical principles: An approach to environmental impact performance evaluation". Molecular & Cellular Biomechanics 22, n.º 4 (20 de março de 2025): 1704. https://doi.org/10.62617/mcb1704.
Texto completo da fontePost, Andrew, T. Blaine Hoshizaki, Michael D. Gilchrist, David Koncan, Lauren Dawson, Wesley Chen, Andrée-Anne Ledoux, Roger Zemek e _. _. "A comparison in a youth population between those with and without a history of concussion using biomechanical reconstruction". Journal of Neurosurgery: Pediatrics 19, n.º 4 (abril de 2017): 502–10. http://dx.doi.org/10.3171/2016.10.peds16449.
Texto completo da fonteZhang, Shuya. "Biomechanics-inspired utilization 5G multimedia for intelligent title recommendations in low carbon smart libraries through collaborative filtering algorithms". Molecular & Cellular Biomechanics 22, n.º 4 (17 de março de 2025): 925. https://doi.org/10.62617/mcb925.
Texto completo da fonteYu, Bo. "Practical research on wetland ecosystem services and traditional plant protection in the biosphere reserves of Yunnan: A biomechanics perspective". Molecular & Cellular Biomechanics 22, n.º 3 (13 de fevereiro de 2025): 817. https://doi.org/10.62617/mcb817.
Texto completo da fonteCos, Ignasi, Nicolas Bélanger e Paul Cisek. "The influence of predicted arm biomechanics on decision making". Journal of Neurophysiology 105, n.º 6 (junho de 2011): 3022–33. http://dx.doi.org/10.1152/jn.00975.2010.
Texto completo da fonteLiu, Mingyi, Cherice Hill, Robin Queen e Lei Zuo. "A lightweight wearable biomechanical energy harvester". Smart Materials and Structures 30, n.º 7 (16 de junho de 2021): 075032. http://dx.doi.org/10.1088/1361-665x/ac03c3.
Texto completo da fonteGao, Jinxia, e Tian Zhou. "Biomechanical and cellular factors affecting the speed and accuracy of tennis serve". Molecular & Cellular Biomechanics 22, n.º 4 (19 de março de 2025): 1275. https://doi.org/10.62617/mcb1275.
Texto completo da fonteLv, Xiaoping. "Innovation in classroom interaction mode of business English teaching driven by biomechanics and data analysis". Molecular & Cellular Biomechanics 22, n.º 4 (5 de março de 2025): 1626. https://doi.org/10.62617/mcb1626.
Texto completo da fonteZhang, Yunshu, e Yue Wei. "Low-carbon transformation and ecological safeguarding in the Yellow River Basin: Integrating biomechanical and biological insights". Molecular & Cellular Biomechanics 21, n.º 2 (6 de novembro de 2024): 408. http://dx.doi.org/10.62617/mcb.v21i2.408.
Texto completo da fonteWu, Hanzhou, Alexander Tatarenko, M. I. Bichurin e Yaojin Wang. "A multiferroic module for biomechanical energy harvesting". Nano Energy 83 (maio de 2021): 105777. http://dx.doi.org/10.1016/j.nanoen.2021.105777.
Texto completo da fonteKapti, Akin Oguz, e Erkul Kurulay. "Biomechanical Energy Harvester Design For Active Prostheses". SAÜ Fen Bilimleri Enstitüsü Dergisi 16, n.º 3 (2012): 146–56. http://dx.doi.org/10.5505/saufbe.2012.63835.
Texto completo da fonteJin, Lu. "BIOMECHANICAL ENERGY METABOLISM MODEL OF SPORTS MEDICINE". Revista Brasileira de Medicina do Esporte 27, n.º 7 (julho de 2021): 674–77. http://dx.doi.org/10.1590/1517-8692202127072021_0362.
Texto completo da fonteSelinger, Jessica C., e J. Maxwell Donelan. "Myoelectric Control for Adaptable Biomechanical Energy Harvesting". IEEE Transactions on Neural Systems and Rehabilitation Engineering 24, n.º 3 (março de 2016): 364–73. http://dx.doi.org/10.1109/tnsre.2015.2510546.
Texto completo da fonteZou, Yongjiu, Vidhur Raveendran e Jun Chen. "Wearable triboelectric nanogenerators for biomechanical energy harvesting". Nano Energy 77 (novembro de 2020): 105303. http://dx.doi.org/10.1016/j.nanoen.2020.105303.
Texto completo da fonteHitt, Joseph, Thomas Sugar, Matthew Holgate, Ryan Bellman e Kevin Hollander. "Robotic transtibial prosthesis with biomechanical energy regeneration". Industrial Robot: An International Journal 36, n.º 5 (21 de agosto de 2009): 441–47. http://dx.doi.org/10.1108/01439910910980169.
Texto completo da fonteIdárraga, G., J. Ramos, R. A. Young, F. Denes e V. Zuñiga. "Biomechanical Pulping of Agave sisalana". Holzforschung 55, n.º 1 (14 de dezembro de 2001): 42–46. http://dx.doi.org/10.1515/hf.2001.007.
Texto completo da fonteIslam, Elaijah, Abu Musa Abdullah, Aminur Rashid Chowdhury, Farzana Tasnim, Madelyne Martinez, Carolina Olivares, Karen Lozano e M. Jasim Uddin. "Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting". Nano Energy 77 (novembro de 2020): 105250. http://dx.doi.org/10.1016/j.nanoen.2020.105250.
Texto completo da fonteGe, Minyan, Shumao Xu, Yurui Tang, Yuchun Wang, Xinyi Cui, Weiqiang Zhang e Jing Wang. "Soft Magnetoelasticity for Mechanical Energy Harvesting". Innovation Discovery 2, n.º 2 (1 de abril de 2025): 7. https://doi.org/10.53964/id.2025007.
Texto completo da fonteRahman, Muhammad Toyabur, SM Sohel Rana, Md Salauddin, Pukar Maharjan, Trilochan Bhatta e Jae Yeong Park. "Biomechanical Energy: Biomechanical Energy‐Driven Hybridized Generator as a Universal Portable Power Source for Smart/Wearable Electronics (Adv. Energy Mater. 12/2020)". Advanced Energy Materials 10, n.º 12 (março de 2020): 2070056. http://dx.doi.org/10.1002/aenm.202070056.
Texto completo da fonteJin, Congran, Lin Dong, Zhe Xu, Andrew Closson, Andrew Cabe, Aleksandra Gruslova, Scott Jenney et al. "Biomechanical Energy Harvester: Skin‐like Elastomer Embedded Zinc Oxide Nanoarrays for Biomechanical Energy Harvesting (Adv. Mater. Interfaces 10/2021)". Advanced Materials Interfaces 8, n.º 10 (maio de 2021): 2170057. http://dx.doi.org/10.1002/admi.202170057.
Texto completo da fonteGhareaghaji, Ali. "Piezoelectric Nanowire toward Harvesting Energy from In-Vivo Environment". Bulletin of Electrical Engineering and Informatics 4, n.º 1 (1 de março de 2015): 59–66. http://dx.doi.org/10.11591/eei.v4i1.327.
Texto completo da fonteRungsiyakull, Chaiy, Qing Li, Wei Li, Richard Appleyard e Michael Swain. "Effect of Fully Porous-Coated (FPC) Technique on Osseointegration of Dental Implants". Advanced Materials Research 32 (fevereiro de 2008): 189–92. http://dx.doi.org/10.4028/www.scientific.net/amr.32.189.
Texto completo da fonteBerthaume, Michael A., e Kornelius Kupczik. "Molar biomechanical function in South African hominins Australopithecus africanus and Paranthropus robustus". Interface Focus 11, n.º 5 (13 de agosto de 2021): 20200085. http://dx.doi.org/10.1098/rsfs.2020.0085.
Texto completo da fonteYang, Chen, e Pengfei Jin. "Factor analysis of the improvement of bat energy in baseball hitting". Journal of Human Sport and Exercise 20, n.º 2 (3 de janeiro de 2025): 381–93. https://doi.org/10.55860/df8j1d03.
Texto completo da fonteBabu, Anjaly, D. Rakesh, P. Supraja, Siju Mishra, K. Uday Kumar, R. Rakesh Kumar, D. Haranath, Estari Mamidala e Raju Nagapuri. "Plant-based triboelectric nanogenerator for biomechanical energy harvesting". Results in Surfaces and Interfaces 8 (agosto de 2022): 100075. http://dx.doi.org/10.1016/j.rsurfi.2022.100075.
Texto completo da fonteGurusamy, Nedunchelien, Irraivan Elamvazuthi, Norashikin Yahya, Steven Su e Bao-Huy Truong. "Simulation of Electromagnetic Generator as Biomechanical Energy Harvester". Applied Sciences 12, n.º 12 (18 de junho de 2022): 6197. http://dx.doi.org/10.3390/app12126197.
Texto completo da fonteXie, Long Han, e Ru Xu Du. "Harvesting Human Biomechanical Energy to Power Portable Electronics". Advanced Materials Research 516-517 (maio de 2012): 1779–84. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.1779.
Texto completo da fonteYi, Zhiran, Dong Wu, Yewang Su, Bin Yang, Ye Ma, Ning Li, Yuanting Zhang, Wenming Zhang e Zuankai Wang. "Battery-less cardiac pacing using biomechanical energy harvesting". Device 2, n.º 11 (novembro de 2024): 100471. http://dx.doi.org/10.1016/j.device.2024.100471.
Texto completo da fonteJiang, Qiang, Bo Chen e Ya Yang. "Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy". ACS Applied Energy Materials 1, n.º 8 (2 de julho de 2018): 4269–76. http://dx.doi.org/10.1021/acsaem.8b00902.
Texto completo da fonteLiu, Guo Xu, Wen Jian Li, Wen Bo Liu, Tian Zhao Bu, Tong Guo, Dong Dong Jiang, Jun Qing Zhao, Feng Ben Xi, Wei Guo Hu e Chi Zhang. "Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting". Advanced Sustainable Systems 2, n.º 12 (15 de agosto de 2018): 1800081. http://dx.doi.org/10.1002/adsu.201800081.
Texto completo da fonteHou, Zehao, Qinghua Liu, Huan Zhao, Junxiao Xie, Junyi Cao, Wei-Hsin Liao e Chris R. Bowen. "Biomechanical modeling and experiments of energy harvesting backpacks". Mechanical Systems and Signal Processing 200 (outubro de 2023): 110612. http://dx.doi.org/10.1016/j.ymssp.2023.110612.
Texto completo da fonteRanaweera, P., R. Gopura, S. Jayawardena e G. Mann. "Passively-powered knee exoskeleton to reduce human effort during manual lifting". Bolgoda Plains 4, n.º 1 (agosto de 2024): 65–67. http://dx.doi.org/10.31705/bprm.v4(1).2024.16.
Texto completo da fonteGong, Liyan, Wei Zhou e Rongling Qin. "Application and innovation of biomechanics-based energy consumption model for human movement in landscape planning". Molecular & Cellular Biomechanics 22, n.º 4 (5 de março de 2025): 865. https://doi.org/10.62617/mcb865.
Texto completo da fonteMaulana, Ilham, Fadhillah Irsyad Rahman, Qorry Armen Gemael e Deden Akbar Izzuddin. "Biomechanical Movement Analysis Of Shooting In Basketball In Professional Athletes Golden State Warriors: A Case Study Of Stephen Curry". COMPETITOR: Jurnal Pendidikan Kepelatihan Olahraga 16, n.º 3 (30 de outubro de 2024): 1063. https://doi.org/10.26858/cjpko.v16i3.68499.
Texto completo da fonteYang, Han, Shiguo Yuan, Yuan Yan, Li Zhou, Chao Zheng, Yikai Li e Junhua Li. "Finite Element Analysis of the Effects of Different Shapes of Adult Cranial Sutures on Their Mechanical Behavior". Bioengineering 12, n.º 3 (19 de março de 2025): 318. https://doi.org/10.3390/bioengineering12030318.
Texto completo da fonteZhang, Gaoyang, e Shunyong Wang. "Integrating sports industry development with national health promotion: A biomechanics-informed study of the healthy China strategy". Molecular & Cellular Biomechanics 22, n.º 2 (17 de janeiro de 2025): 807. https://doi.org/10.62617/mcb807.
Texto completo da fonteZhang, Ning. "Application of topological optimization and biomechanical simulation to enhance the design of collision safety systems and injury prediction in new energy vehicles". Molecular & Cellular Biomechanics 22, n.º 4 (24 de março de 2025): 1511. https://doi.org/10.62617/mcb1511.
Texto completo da fonteShepertycky, Michael, Yan-Fei Liu e Qingguo Li. "A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester". PLOS ONE 18, n.º 8 (10 de agosto de 2023): e0289811. http://dx.doi.org/10.1371/journal.pone.0289811.
Texto completo da fonteHerr, Hugh M., e Alena M. Grabowski. "Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation". Proceedings of the Royal Society B: Biological Sciences 279, n.º 1728 (13 de julho de 2011): 457–64. http://dx.doi.org/10.1098/rspb.2011.1194.
Texto completo da fonteLi, Hai Ge. "Technical analysis and simulation of dance movements based on biomechanical theory". Molecular & Cellular Biomechanics 22, n.º 5 (24 de março de 2025): 1500. https://doi.org/10.62617/mcb1500.
Texto completo da fonteHolt, Kenneth G., e Suh Fang Jeng. "Advances in Biomechanical Analysis of the Physically Challenged Child: Cerebral Palsy". Pediatric Exercise Science 4, n.º 3 (agosto de 1992): 213–35. http://dx.doi.org/10.1123/pes.4.3.213.
Texto completo da fonteLv, Shasha, Tao Huang e Hao Yu. "Silicon rubber/expandable microsphere based triboelectric nanogenerator for harvesting biomechanical energy". Journal of Physics: Conference Series 2076, n.º 1 (1 de novembro de 2021): 012098. http://dx.doi.org/10.1088/1742-6596/2076/1/012098.
Texto completo da fonteMichel, Philipp A., J. Christoph Katthagen, Benedikt Schliemann, Sina Wilkens, Andre Frank, Lukas F. Heilmann, Felix Dyrna e Michael J. Raschke. "Biomechanical Value of a Protective Proximal Humeral Cerclage in Reverse Total Shoulder Arthroplasty". Journal of Clinical Medicine 10, n.º 19 (6 de outubro de 2021): 4600. http://dx.doi.org/10.3390/jcm10194600.
Texto completo da fonteVinod Kumar, Mr K., P. Dhatreesh Sai Reddy, G. Kalyani, D. Charan, S. Kusuma e G. Harshitha. "Knee Energy Harvester Using Servo Motor". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, n.º 04 (9 de abril de 2025): 1–9. https://doi.org/10.55041/ijsrem44106.
Texto completo da fonteNorcross, Marc F., Michael D. Lewek, Darin A. Padua, Sandra J. Shultz, Paul S. Weinhold e J. Troy Blackburn. "Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses". Journal of Athletic Training 48, n.º 6 (1 de dezembro de 2013): 748–56. http://dx.doi.org/10.4085/1062-6050-48.4.09.
Texto completo da fonteMaza, Maria, Fernando Lopez-Arias, Javier L. Lara e Inigo J. Losada. "ECOSYSTEM BIOMASS AS A KEY PARAMETER DETERMINING ITS COASTAL PROTECTION SERVICE". Coastal Engineering Proceedings, n.º 36v (28 de dezembro de 2020): 29. http://dx.doi.org/10.9753/icce.v36v.management.29.
Texto completo da fonteLiu, Huifang, Xinxin Zhao, Hongkai Liu e Jiaxin Yang. "Magnetostrictive biomechanical energy harvester with a hybrid force amplifier". International Journal of Mechanical Sciences 233 (novembro de 2022): 107652. http://dx.doi.org/10.1016/j.ijmecsci.2022.107652.
Texto completo da fonteWang, Jiaxin, Ziyuan Jiang, Wenpeng Sun, Xueping Xu, Qinkai Han e Fulei Chu. "Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy". Applied Energy 308 (fevereiro de 2022): 118322. http://dx.doi.org/10.1016/j.apenergy.2021.118322.
Texto completo da fonteHansen, Benjamin J., Ying Liu, Rusen Yang e Zhong Lin Wang. "Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy". ACS Nano 4, n.º 7 (27 de maio de 2010): 3647–52. http://dx.doi.org/10.1021/nn100845b.
Texto completo da fonte