Literatura científica selecionada sobre o tema "Biosensiing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Biosensiing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Biosensiing"
Kumar, Ravinder, Somvir ., Surender Singh e Kulwant . "A Review on application of Nanoscience for Biosensing". International Journal of Engineering Research 3, n.º 4 (1 de abril de 2014): 279–85. http://dx.doi.org/10.17950/ijer/v3s4/423.
Texto completo da fonteZhou Xue, 周雪, 闫欣 Yan Xin, 张学楠 Zhang Xuenan, 王方 Wang Fang, 李曙光 Li Shuguang, 郎雷 Lang Lei e 程同蕾 Cheng Tonglei. "软玻璃光纤在生物传感领域应用的研究进展". Laser & Optoelectronics Progress 58, n.º 15 (2021): 1516019. http://dx.doi.org/10.3788/lop202158.1516019.
Texto completo da fonteP.Sangeetha, P. Sangeetha, e Dr A. Vimala Juliet. "Biosensing by Cantilever Resonator for Disease Causing Pathogen Detection". Indian Journal of Applied Research 4, n.º 3 (1 de outubro de 2011): 174–75. http://dx.doi.org/10.15373/2249555x/mar2014/51.
Texto completo da fonteCurtin, Kathrine, Bethany J. Fike, Brandi Binkley, Toktam Godary e Peng Li. "Recent Advances in Digital Biosensing Technology". Biosensors 12, n.º 9 (23 de agosto de 2022): 673. http://dx.doi.org/10.3390/bios12090673.
Texto completo da fonteWu, Jiyun, e Qiuyao Wu. "The Review of Biosensor and its Application in the Diagnosis of COVID-19". E3S Web of Conferences 290 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202129003028.
Texto completo da fonteHowell, Noura, John Chuang, Abigail De Kosnik, Greg Niemeyer e Kimiko Ryokai. "Emotional Biosensing". Proceedings of the ACM on Human-Computer Interaction 2, CSCW (novembro de 2018): 1–25. http://dx.doi.org/10.1145/3274338.
Texto completo da fonteMejía-Salazar, J. R., e Osvaldo N. Oliveira. "Plasmonic Biosensing". Chemical Reviews 118, n.º 20 (24 de setembro de 2018): 10617–25. http://dx.doi.org/10.1021/acs.chemrev.8b00359.
Texto completo da fonteFink, Dietmar, Gerardo Munoz Hernandez, Jiri Vacik e Lital Alfonta. "Pulsed Biosensing". IEEE Sensors Journal 11, n.º 4 (abril de 2011): 1084–87. http://dx.doi.org/10.1109/jsen.2010.2073461.
Texto completo da fonteBellassai, Noemi, Roberta D’Agata e Giuseppe Spoto. "Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications". Analytical and Bioanalytical Chemistry 413, n.º 24 (6 de abril de 2021): 6063–77. http://dx.doi.org/10.1007/s00216-021-03309-4.
Texto completo da fonteSoleymani, Leyla, Sudip Saha, Amanda Victorious, Sadman Sakib e Igor Zhitomirsky. "(Invited) Development of New Strategies for Bringing Photoelectrochemical Biosensing to the Point-of-Need". ECS Meeting Abstracts MA2022-01, n.º 53 (7 de julho de 2022): 2178. http://dx.doi.org/10.1149/ma2022-01532178mtgabs.
Texto completo da fonteTeses / dissertações sobre o assunto "Biosensiing"
Mickan, Samuel Peter. "T-ray biosensing /". Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phm6253.pdf.
Texto completo da fonteD'Imperio, Luke A. "Biosensing-inspired Nanostructures:". Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108627.
Texto completo da fonteNanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Ravindran, Ramasamy. "An electronic biosensing platform". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44774.
Texto completo da fonteLai, Ming-Liang. "Developing piezoelectric biosensing methods". Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6109/.
Texto completo da fonteMuñoz, Berbel Xavier. "Microsystems based on microbial biosensing". Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3587.
Texto completo da fonteSekretaryova, Alina. "Novel reagentless electrodes for biosensing". Licentiate thesis, Linköpings universitet, Kemiska och optiska sensorsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112345.
Texto completo da fonteArchibald, Michelle M. "Novel nanoarchitectures for electrochemical biosensing". Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106807.
Texto completo da fonteSensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Llandro, Justin. "Magnetic rings for digital biosensing". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611941.
Texto completo da fonteWang, Wenxing. "Development of microcantilever biosensing platforms". Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2722.
Texto completo da fonteTriggs, Graham J. "Resonant grating surfaces for biosensing". Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/13210/.
Texto completo da fonteLivros sobre o assunto "Biosensiing"
Schultz, Jerome, Milan Mrksich, Sangeeta N. Bhatia, David J. Brady, Antonio J. Ricco, David R. Walt e Charles L. Wilkins. Biosensing. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x.
Texto completo da fonteBhattacharya, Enakshi. Biosensing with Silicon. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92714-1.
Texto completo da fonteChandra, Pranjal, e Kuldeep Mahato, eds. Miniaturized Biosensing Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9897-2.
Texto completo da fonteSchöning, Michael J., e Arshak Poghossian, eds. Label-Free Biosensing. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75220-4.
Texto completo da fonteMerkoi, Arben, ed. Biosensing Using Nanomaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470447734.
Texto completo da fonteBorse, Vivek, Pranjal Chandra e Rohit Srivastava, eds. BioSensing, Theranostics, and Medical Devices. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2782-8.
Texto completo da fonteChandra, Pranjal, ed. Biosensing and Micro-Nano Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6.
Texto completo da fonteRenneberg, Reinhard, e Fred Lisdat, eds. Biosensing for the 21st Century. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75201-1.
Texto completo da fonteZhu, Jun-Jie, Jing-Jing Li, Hai-Ping Huang e Fang-Fang Cheng. Quantum Dots for DNA Biosensing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-44910-9.
Texto completo da fonteCapítulos de livros sobre o assunto "Biosensiing"
Schultz, Jerome. "Infrastructure Overview". In Biosensing, 1–29. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_1.
Texto completo da fonteWalt, David R. "Optical Biosensing". In Biosensing, 31–43. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_2.
Texto completo da fonteMrksich, Milan. "Electro-Based Sensors and Surface Engineering". In Biosensing, 45–53. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_3.
Texto completo da fonteBhatia, Sangeeta N. "Cell and Tissue-Based Sensors". In Biosensing, 55–65. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_4.
Texto completo da fonteWilkins, Charles L. "Mass Spectrometry and Biosensing Research". In Biosensing, 67–78. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_5.
Texto completo da fonteRicco, Antonio J. "Microfabricated Biosensing Devices: MEMS, Microfluidics, and Mass Sensors". In Biosensing, 79–106. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_6.
Texto completo da fonteBrady, David J. "Information Systems for Biosensing". In Biosensing, 107–19. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_7.
Texto completo da fonteKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles et al. "Biosensing". In Encyclopedia of Nanotechnology, 329. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100084.
Texto completo da fonteWolf, Jean-Pierre. "Biosensing Instrumentation". In NATO Science for Peace and Security Series B: Physics and Biophysics, 131–52. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_4.
Texto completo da fonteMaeda, Mizuo. "Biosensing Materials". In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_230-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Biosensiing"
Zhang, Bing, Kai Pang, Yi Sun e Xiaoping Wang. "High-peformance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320083.
Texto completo da fonteEscobar Acevedo, Marco Antonio, J. R. Guzman-Sepulveda, Carlos G. Martínez-Arias, Miguel Torres-Cisneros e Rafael Guzman-Cabrera. "Biosensing using long-range surface plasmon structures". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320281.
Texto completo da fonteRagan, Regina, e William Thrift. "Quantitative single molecule SERS sensing enabled by machine learning (Conference Presentation)". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320297.
Texto completo da fonteCojocaru, Ivan, Jing-Wei Fan, Joe Becker, Ilya V. Fedotov, Masfer H. Alkahtani, Abdulrahman Alajlan, Sean Blakley et al. "All-optical high resolution thermometry with color centers in diamond (Conference Presentation)". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320316.
Texto completo da fonteChang, An-Yi, e Prabhu Arumugam. "Fabrication and characterization of boron-doped ultrananocrystalline diamond microelectrodes modified with multi-walled carbon nanotubes and nafion". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320417.
Texto completo da fonteNishino, Tomoki, Hiroshi Tanigawa e Jun Sekiguchi. "Antifouling technology of metamaterial structure using biomimetic technology". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320471.
Texto completo da fonteDubolazov, Olexander V., Mikhailo Sakhnovskiy, M. S. Garazduyk, A. V. Syvokorovskaya, G. B. Bodnar, V. A. Ushenko, O. I. Olar e O. Tsyhykalo. "Correlation structure of Stokes parametric images of polycrystalline films of human biological fluids". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320512.
Texto completo da fonteSokolnyk, S. O., M. I. Sidor, Olexander V. Dubolazov, Leonid Pidkamin, Yuriy Ushenko, O. V. Olar, G. B. Bodnar e O. Prydiy. "Clinical applications of the Mueller-matrix reconstruction of the polycrystalline structure of multiple-scattering biological tissues". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320527.
Texto completo da fonteUshenko, Alexander, V. G. Zhytaryuk, M. I. Sidor, A. V. Motrich, O. V. Pavliukovich, O. Ya Wulchulyak, I. V. Soltys e N. Pavliukovich. "Diffuse tomography of optical anisotropy of tumors of the uterus wall". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320529.
Texto completo da fonteSyvokorovskaya, A. V., M. P. Gorsky, R. Besaga, Yuriy Ushenko, Yuriy Tomka, S. O. Sokolnuik, O. Bakun, L. Yu Kushnerik e S. Golub. "System of 3D Mueller-matrix reconstruction of fibrillar networks of biological tissues of various morphological structure and physiological state". In Biosensing and Nanomedicine XI, editado por Hooman Mohseni, Massoud H. Agahi e Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320535.
Texto completo da fonteRelatórios de organizações sobre o assunto "Biosensiing"
Anderson, G., M. Mauro, H. Mattoussi e R. Banahalli. Luminescent Nanoparticles for High Sensitivity Biosensing. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2000. http://dx.doi.org/10.21236/ada399563.
Texto completo da fonteYan, Hao. Self-Assembled Combinatorial Nanoarrays for Multiplex Biosensing. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2010. http://dx.doi.org/10.21236/ada518368.
Texto completo da fonteMartinez, Jennifer. Genetically encoded functional materials: regenerative medicine, optoelectronics, biosensing. Office of Scientific and Technical Information (OSTI), fevereiro de 2015. http://dx.doi.org/10.2172/1169673.
Texto completo da fonteBroach, James, Alexandre Morozov e Ron Weiss. Highly Extensible Programmed Biosensing Circuits with Fast Memory. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2011. http://dx.doi.org/10.21236/ada559064.
Texto completo da fonteSlipher, Geoffrey, Randy Mrozek, W. D. Hairston, Joseph Conroy, Wosen Wolde e William Nothwang. Stretchable Conductive Elastomers for Soldier Biosensing Applications: Final Report. Fort Belvoir, VA: Defense Technical Information Center, março de 2016. http://dx.doi.org/10.21236/ad1005120.
Texto completo da fonteShtenberg, Giorgi, e Shelley Minteer. Dual mode detection of heavy metal pollutants: A real-time biosensing method. United States Department of Agriculture, janeiro de 2018. http://dx.doi.org/10.32747/2018.7604937.bard.
Texto completo da fonteDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada582056.
Texto completo da fonteDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, março de 2015. http://dx.doi.org/10.21236/ada616874.
Texto completo da fonteStukes, James, Frank Weaver, Bettye Stokes, Nancy O'Connor e Charlie Barans. Marine Science Initiative at South Carolina State College: An Investigation of the Biosensing Parameters Regulating Bacterial and Larval Attachment on Substrata. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1993. http://dx.doi.org/10.21236/ada268910.
Texto completo da fonte