Artigos de revistas sobre o tema "Black-Scholes PDE"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 45 melhores artigos de revistas para estudos sobre o assunto "Black-Scholes PDE".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Özer, H. Ünsal, e Ahmet Duran. "The source of error behavior for the solution of Black–Scholes PDE by finite difference and finite element methods". International Journal of Financial Engineering 05, n.º 03 (setembro de 2018): 1850028. http://dx.doi.org/10.1142/s2424786318500287.
Texto completo da fonteRIGATOS, GERASIMOS G. "BOUNDARY CONTROL OF THE BLACK–SCHOLES PDE FOR OPTION DYNAMICS STABILIZATION". Annals of Financial Economics 11, n.º 02 (junho de 2016): 1650009. http://dx.doi.org/10.1142/s2010495216500093.
Texto completo da fonteRigatos, G., e P. Siano. "Feedback control of the multi-asset Black–Scholes PDE using differential flatness theory". International Journal of Financial Engineering 03, n.º 02 (junho de 2016): 1650008. http://dx.doi.org/10.1142/s2424786316500080.
Texto completo da fonteHu, Jinhao, e Siqing Gan. "High order method for Black–Scholes PDE". Computers & Mathematics with Applications 75, n.º 7 (abril de 2018): 2259–70. http://dx.doi.org/10.1016/j.camwa.2017.12.002.
Texto completo da fonteEl-Khatib, Youssef. "A Homotopy Analysis Method for the Option Pricing PDE in Post-Crash Markets". Mathematical Economics Letters 2, n.º 3-4 (30 de novembro de 2014): 45–50. http://dx.doi.org/10.1515/mel-2013-0014.
Texto completo da fonteOgunyebi, SN, SE Fadugba, TO Ogunlade, KJ Adebayo, BT Babalola, O. Faweya e HO Emeka. "Direct Solution of the Black-Scholes PDE Models with Non-Integer Order". Journal of Physics: Conference Series 2199, n.º 1 (1 de fevereiro de 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2199/1/012003.
Texto completo da fonteWilmott, Paul. "The two best ways to derive the Black–Scholes PDE". China Finance Review International 10, n.º 2 (17 de dezembro de 2019): 168–74. http://dx.doi.org/10.1108/cfri-12-2018-0153.
Texto completo da fonteHan, Yuecai, e Chunyang Liu. "Asian Option Pricing under an Uncertain Volatility Model". Mathematical Problems in Engineering 2020 (21 de abril de 2020): 1–10. http://dx.doi.org/10.1155/2020/4758052.
Texto completo da fonteHossan, Md Shorif, Md Shafiqul Islam e Md Kamrujjaman. "Efficient Numerical Schemes for Computations of European Options with Transaction Costs". European Journal of Mathematical Analysis 2 (17 de fevereiro de 2022): 9. http://dx.doi.org/10.28924/ada/ma.2.9.
Texto completo da fontePrabakaran, Sellamuthu. "CONSTRUCTION OF THE BLACK-SCHOLES PDE WITH JUMP-DIFFUSION MODEL". Far East Journal of Mathematical Sciences (FJMS) 110, n.º 1 (30 de janeiro de 2019): 131–63. http://dx.doi.org/10.17654/ms110010131.
Texto completo da fonteTomas, Michael J., e Jun Yu. "An Asymptotic Solution for Call Options on Zero-Coupon Bonds". Mathematics 9, n.º 16 (14 de agosto de 2021): 1940. http://dx.doi.org/10.3390/math9161940.
Texto completo da fonteĎuriš, Karol, Shih-Hau Tan, Choi-Hong Lai e Daniel Ševčovič. "Comparison of the Analytical Approximation Formula and Newton's Method for Solving a Class of Nonlinear Black–Scholes Parabolic Equations". Computational Methods in Applied Mathematics 16, n.º 1 (1 de janeiro de 2016): 35–50. http://dx.doi.org/10.1515/cmam-2015-0035.
Texto completo da fonteRigatos, Gerasimos, e Pierluigi Siano. "Stabilization of the multi-asset Black-Scholes PDE using differential flatness theory". IFAC-PapersOnLine 49, n.º 8 (2016): 180–85. http://dx.doi.org/10.1016/j.ifacol.2016.07.434.
Texto completo da fonteRamírez-Espinoza, Germán I., e Matthias Ehrhardt. "Conservative and Finite Volume Methods for the Convection-Dominated Pricing Problem". Advances in Applied Mathematics and Mechanics 5, n.º 06 (dezembro de 2013): 759–90. http://dx.doi.org/10.4208/aamm.12-m1216.
Texto completo da fonteBajalan, Saeed, e Nastaran Bajalan. "Novel ANN Method for Solving Ordinary and Time-Fractional Black–Scholes Equation". Complexity 2021 (30 de julho de 2021): 1–15. http://dx.doi.org/10.1155/2021/5511396.
Texto completo da fonteJayaraman, Amitesh S., Domenico Campolo e Gregory S. Chirikjian. "Black-Scholes Theory and Diffusion Processes on the Cotangent Bundle of the Affine Group". Entropy 22, n.º 4 (17 de abril de 2020): 455. http://dx.doi.org/10.3390/e22040455.
Texto completo da fonteRigatos, Gerasimos G. "Stabilization of option price dynamics through feedback control of the Black-Scholes PDE". IFAC-PapersOnLine 48, n.º 11 (2015): 574–80. http://dx.doi.org/10.1016/j.ifacol.2015.09.248.
Texto completo da fonteRoul, Pradip, e V. M. K. Prasad Goura. "A sixth order numerical method and its convergence for generalized Black–Scholes PDE". Journal of Computational and Applied Mathematics 377 (outubro de 2020): 112881. http://dx.doi.org/10.1016/j.cam.2020.112881.
Texto completo da fonteLI, MINQIANG, e FABIO MERCURIO. "CLOSED-FORM APPROXIMATION OF PERPETUAL TIMER OPTION PRICES". International Journal of Theoretical and Applied Finance 17, n.º 04 (junho de 2014): 1450026. http://dx.doi.org/10.1142/s0219024914500265.
Texto completo da fonteZhou, Liuwei, e Zhijie Wang. "Portfolio Strategy of Financial Market with Regime Switching Driven by Geometric Lévy Process". Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/538041.
Texto completo da fonteESIPOV, SERGEI, e IGOR VAYSBURD. "ON THE PROFIT AND LOSS DISTRIBUTION OF DYNAMIC HEDGING STRATEGIES". International Journal of Theoretical and Applied Finance 02, n.º 02 (abril de 1999): 131–52. http://dx.doi.org/10.1142/s0219024999000108.
Texto completo da fonteLYUKOV, ALEXANDER. "OPTION PRICING WITH FEEDBACK EFFECTS". International Journal of Theoretical and Applied Finance 07, n.º 06 (setembro de 2004): 757–68. http://dx.doi.org/10.1142/s0219024904002633.
Texto completo da fonteTAYLOR, STEPHEN, e SCOTT GLASGOW. "A NOVEL REDUCTION OF THE SIMPLE ASIAN OPTION AND LIE-GROUP INVARIANT SOLUTIONS". International Journal of Theoretical and Applied Finance 12, n.º 08 (dezembro de 2009): 1197–212. http://dx.doi.org/10.1142/s0219024909005634.
Texto completo da fonteLin, Sha, e Song-Ping Zhu. "Pricing resettable convertible bonds using an integral equation approach". IMA Journal of Management Mathematics 31, n.º 4 (24 de dezembro de 2019): 417–43. http://dx.doi.org/10.1093/imaman/dpz015.
Texto completo da fonteSong, Qingshuo, e Pengfei Yang. "Approximating functionals of local martingales under lack of uniqueness of the Black–Scholes PDE solution". Quantitative Finance 15, n.º 5 (25 de novembro de 2013): 901–8. http://dx.doi.org/10.1080/14697688.2013.838634.
Texto completo da fonteRigatos, G., e N. Zervos. "Detection of Mispricing in the Black–Scholes PDE Using the Derivative-Free Nonlinear Kalman Filter". Computational Economics 50, n.º 1 (16 de abril de 2016): 1–20. http://dx.doi.org/10.1007/s10614-016-9575-2.
Texto completo da fonteMahatma, Yudi, e Ibnu Hadi. "Stochastic Volatility Estimation of Stock Prices using the Ensemble Kalman Filter". InPrime: Indonesian Journal of Pure and Applied Mathematics 3, n.º 2 (10 de novembro de 2021): 136–43. http://dx.doi.org/10.15408/inprime.v3i2.20256.
Texto completo da fonteDebnath, Tanmoy Kumar, e ABM Shahadat Hossain. "A Comparative Study between Implicit and Crank-Nicolson Finite Difference Method for Option Pricing". GANIT: Journal of Bangladesh Mathematical Society 40, n.º 1 (14 de julho de 2020): 13–27. http://dx.doi.org/10.3329/ganit.v40i1.48192.
Texto completo da fontein 't Hout, K. J., e K. Volders. "Stability and convergence analysis of discretizations of the Black-Scholes PDE with the linear boundary condition". IMA Journal of Numerical Analysis 34, n.º 1 (16 de maio de 2013): 296–325. http://dx.doi.org/10.1093/imanum/drs050.
Texto completo da fonteEl kharrazi, Zaineb, Nouh Izem, Mustapha Malek e Sahar Saoud. "A Partition of unity finite element method for valuation American option under Black-Scholes model". Moroccan Journal of Pure and Applied Analysis 7, n.º 2 (29 de janeiro de 2021): 324–36. http://dx.doi.org/10.2478/mjpaa-2021-0021.
Texto completo da fonteSalvador, Beatriz, Cornelis W. Oosterlee e Remco van der Meer. "European and American Options Valuation by Unsupervised Learning with Artificial Neural Networks". Proceedings 54, n.º 1 (19 de agosto de 2020): 14. http://dx.doi.org/10.3390/proceedings2020054014.
Texto completo da fonteFan, Congyin, Kaili Xiang e Peimin Chen. "Efficient Option Pricing in Crisis Based on Dynamic Elasticity of Variance Model". Discrete Dynamics in Nature and Society 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7496539.
Texto completo da fonteBonotto, E. M., M. Federson e P. Muldowney. "The Black–Scholes Equation with Impulses at Random Times Via Generalized Riemann Integral". Proceedings of the Singapore National Academy of Science 15, n.º 01 (março de 2021): 45–59. http://dx.doi.org/10.1142/s2591722621400068.
Texto completo da fonteHOOGLAND, J. K., e C. D. D. NEUMANN. "LOCAL SCALE INVARIANCE AND CONTINGENT CLAIM PRICING". International Journal of Theoretical and Applied Finance 04, n.º 01 (fevereiro de 2001): 1–21. http://dx.doi.org/10.1142/s0219024901000857.
Texto completo da fonteAlobaidi, Ghada, e Roland Mallier. "Asymptotic analysis of American call options". International Journal of Mathematics and Mathematical Sciences 27, n.º 3 (2001): 177–88. http://dx.doi.org/10.1155/s0161171201005701.
Texto completo da fonteMei, Shu-Li. "Faber-Schauder Wavelet Sparse Grid Approach for Option Pricing with Transactions Cost". Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/168630.
Texto completo da fonteSalvador, Beatriz, Cornelis W. Oosterlee e Remco van der Meer. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks". Mathematics 9, n.º 1 (28 de dezembro de 2020): 46. http://dx.doi.org/10.3390/math9010046.
Texto completo da fonteJandačka, Martin, e Daniel Ševčovič. "On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile". Journal of Applied Mathematics 2005, n.º 3 (2005): 235–58. http://dx.doi.org/10.1155/jam.2005.235.
Texto completo da fonteKalife, Aymeric, e Saad Mouti. "On Optimal Options Book Execution Strategies with Market Impact". Market Microstructure and Liquidity 02, n.º 03n04 (dezembro de 2016): 1750002. http://dx.doi.org/10.1142/s2382626617500022.
Texto completo da fonteGRISHCHENKO, OLESYA, XIAO HAN e VICTOR NISTOR. "A VOLATILITY-OF-VOLATILITY EXPANSION OF THE OPTION PRICES IN THE SABR STOCHASTIC VOLATILITY MODEL". International Journal of Theoretical and Applied Finance 23, n.º 03 (maio de 2020): 2050018. http://dx.doi.org/10.1142/s0219024920500181.
Texto completo da fonteKolman, Marek. "Galerkin FEM for Black-Scholes PDE". SSRN Electronic Journal, 2017. http://dx.doi.org/10.2139/ssrn.3081892.
Texto completo da fonteLe Floc'h, Fabien. "Pitfalls of Exponential Fitting on the Black-Scholes PDE". SSRN Electronic Journal, 2016. http://dx.doi.org/10.2139/ssrn.2711720.
Texto completo da fonteNuugulu, S. M., F. Gideon e K. C. Patidar. "A robust numerical solution to a time-fractional Black–Scholes equation". Advances in Difference Equations 2021, n.º 1 (24 de fevereiro de 2021). http://dx.doi.org/10.1186/s13662-021-03259-2.
Texto completo da fonteMehra, Mani, Kuldip Singh Patel e Ankita Shukla. "Wavelet-optimized compact finite difference method for convection–diffusion equations". International Journal of Nonlinear Sciences and Numerical Simulation, 3 de dezembro de 2020. http://dx.doi.org/10.1515/ijnsns-2018-0295.
Texto completo da fonteDavey, Ashley, e Harry Zheng. "Deep Learning for Constrained Utility Maximisation". Methodology and Computing in Applied Probability, 26 de novembro de 2021. http://dx.doi.org/10.1007/s11009-021-09912-3.
Texto completo da fonte