Literatura científica selecionada sobre o tema "Blood lipoproteins Metabolism"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Blood lipoproteins Metabolism".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Blood lipoproteins Metabolism"

1

Neary, Richard H., Mark D. Kilby, Padma Kumpatula, Francis L. Game, Deepak Bhatnagar, Paul N. Durrington, and P. M. Shaughn O'Brien. "Fetal and Maternal Lipoprotein Metabolism in Human Pregnancy." Clinical Science 88, no. 3 (March 1, 1995): 311–18. http://dx.doi.org/10.1042/cs0880311.

Texto completo da fonte
Resumo:
1. Lipid, apolipoprotein concentration and composition were determined in maternal venous and umbilical arterial and venous blood at delivery by elective Caesarean section in 13 full-term pregnancies and in 25 healthy non-pregnant females. The indications of Caesarean section were a previous Caesarean section or breech presentation. None of the women was in labour and there were no other complications of pregnancy or fetal distress. 2. The objectives of the study were to establish whether the placenta has a role in feto-maternal cholesterol metabolism through either synthesis or transplacental
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ohkawa, Ryunosuke, Hann Low, Nigora Mukhamedova, Ying Fu, Shao-Jui Lai, Mai Sasaoka, Ayuko Hara, et al. "Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood." Journal of Lipid Research 61, no. 12 (September 9, 2020): 1577–88. http://dx.doi.org/10.1194/jlr.ra120000635.

Texto completo da fonte
Resumo:
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional chol
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Imamura, Hiroyuki, Keiko Mizuuchi, and Reika Oshikata. "Physical Activity and Blood Lipids and Lipoproteins in Dialysis Patients." International Journal of Nephrology 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/106914.

Texto completo da fonte
Resumo:
The relationship between physical activity and blood lipids and lipoproteins in dialysis patients is reviewed in the context of the potentially confounding factors such as nutritional intake, cigarette smoking, obesity, alcohol intake, and physical activity levels in the general population and additional confounding factors such as mode of dialysis and diabetes in dialysis patients. The known associations in the general population of physical activity with high-density-lipoprotein cholesterol subfractions and apolipoprotein A-I are more pronounced in hemodialysis patients than in peritoneal di
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Havel, R. J. "Lipid transport function of lipoproteins in blood plasma." American Journal of Physiology-Endocrinology and Metabolism 253, no. 1 (July 1, 1987): E1—E5. http://dx.doi.org/10.1152/ajpendo.1987.253.1.e1.

Texto completo da fonte
Resumo:
Fatty acid and cholesterol transport in plasma lipoproteins evolved in the context of an open circulatory system in which lipoprotein particles are secreted directly into the blood and have ready access to cells in various tissues. In higher vertebrates with closed capillary beds, hydrolysis of triglycerides at capillary surfaces is required for efficient uptake of their component fatty acids into cells. Likewise, hydrolysis of cellular triglycerides in cells of adipose tissue precedes mobilization of the fatty acids and permits large amounts to be transported in the blood. However, in all Met
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ilves, Liis, Aigar Ottas, Liisi Raam, Mihkel Zilmer, Tanel Traks, Viljar Jaks, and Külli Kingo. "Changes in Lipoprotein Particles in the Blood Serum of Patients with Lichen Planus." Metabolites 13, no. 1 (January 6, 2023): 91. http://dx.doi.org/10.3390/metabo13010091.

Texto completo da fonte
Resumo:
Lichen planus is a chronic inflammatory mucocutaneous disease that belongs to the group of papulosquamous skin diseases among diseases like psoriasis, a widely studied disease in dermatology. The aim of the study was to identify the changes between the blood sera of lichen planus patients and healthy controls to widen the knowledge about the metabolomic aspect of lichen planus and gain a better understanding about the pathophysiology of the disease. We used high-throughput nuclear magnetic resonance (NMR) spectroscopy to measure the levels of blood serum metabolites, lipoproteins and lipoprote
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Stellaard, Frans. "From Dietary Cholesterol to Blood Cholesterol, Physiological Lipid Fluxes, and Cholesterol Homeostasis." Nutrients 14, no. 8 (April 14, 2022): 1643. http://dx.doi.org/10.3390/nu14081643.

Texto completo da fonte
Resumo:
Dietary cholesterol (C) is a major contributor to the endogenous C pool, and it affects the serum concentration of total C, particularly the low-density lipoprotein cholesterol (LDL-C). A high serum concentration of LDL-C is associated with an increased risk for atherosclerosis and cardiovascular diseases. This concentration is dependent on hepatic C metabolism creating a balance between C input (absorption and synthesis) and C elimination (conversion to bile acids and fecal excretion). The daily C absorption rate is determined by dietary C intake, biliary C secretion, direct trans-intestinal
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kersten, Sander. "Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism." PPAR Research 2008 (2008): 1–11. http://dx.doi.org/10.1155/2008/132960.

Texto completo da fonte
Resumo:
Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs). Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARαis the molecular target for the fibrate
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Muscella, Antonella, Erika Stefàno, and Santo Marsigliante. "The effects of exercise training on lipid metabolism and coronary heart disease." American Journal of Physiology-Heart and Circulatory Physiology 319, no. 1 (July 1, 2020): H76—H88. http://dx.doi.org/10.1152/ajpheart.00708.2019.

Texto completo da fonte
Resumo:
Blood lipoproteins are formed by various amounts of cholesterol (C), triglycerides (TGs), phospholipids, and apolipoproteins (Apos). ApoA1 is the major structural protein of high-density lipoprotein (HDL), accounting for ~70% of HDL protein, and mediates many of the antiatherogenic functions of HDL. Conversely, ApoB is the predominant low-density lipoprotein (LDL) Apo and is an indicator of circulating LDL, associated with higher coronary heart disease (CHD) risk. Thus, the ratio of ApoB to ApoA1 (ApoB/ApoA1) is used as a surrogate marker of the risk of CHD related to lipoproteins. Elevated or
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Belozerov, Evgeniy Stepanovich, Nelli Alekseevna Shchukina, Aleksandr Leonidovich Smetanin, Anton Igorevich Andriyanov, Oksana Gennadievna Korosteleva, and Elena Sergeevna Martynova. "LIPID METABOLISM IN YOUNG MILITARY MEN." Ulyanovsk Medico-biological Journal, no. 4 (December 26, 2022): 120–27. http://dx.doi.org/10.34014/2227-1848-2022-4-120-127.

Texto completo da fonte
Resumo:
The purpose of the paper is to assess the influence of the nutritional factor on lipid metabolism in young military men.
 Materials and methods. The objects of the study were young conscripted men aged 19.3±1.2, who feed on combined arms ration (n=71). Lipid metabolism indicators (cholesterol, triglycerides, high-density lipoprotein, low density lipoprotein, very low density lipoproteins and atherogenic index) were assessed in military men. For this purpose, chromatography-mass spectrometry (Beckman Coulter AU480 automatic biochemical analyzer) was used. The study was conducted in the con
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Garmish, O. "The nature of metabolic disorders of blood lipoproteins as the basis for the pathogenesis of atherosclerosis in patients with inflammatory joint diseases." Bukovinian Medical Herald 24, no. 4 (96) (November 26, 2020): 12–18. http://dx.doi.org/10.24061/2413-0737.xxiv.4.96.2020.97.

Texto completo da fonte
Resumo:
Objective of this study was to determine the characteristics of the metabolic disorders of lipids and lipoproteins (LP) in the blood in 112 patients with systemic rheumatic diseases.Material and methods. In all patients, the level of C-reactive protein (CRP), the content of malonic aldehyde (MA) in circulating monocytes, in blood plasma, and catalase activity were determined. The presence and severity of pro-atherogenic status were evaluated by the content of modified low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) in the blood, which was determined by the bioassay meth
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Blood lipoproteins Metabolism"

1

Owen, Alice. "The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins /." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09pho968.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Mamo, John Charles Louis. "Plasma lipoprotein triacylglycerol metabolism in sheep : a thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy." Title page, contents and introduction only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm265.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Willcox, Karen Kay. "EFFECTS OF AGING AND NUTRITION ON PLASMA LIPOPROTEINS IN NONHUMAN PRIMATES." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275320.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hacquebard, Mirjam Rebecca. "Alpha-tocopherol acquisition by plasma lipoproteins and changes in lipoprotein profile after cardiac surgery." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216586.

Texto completo da fonte
Resumo:
Alpha-tocopherol, the most abundant form of vitamin E in man, is transported in the circulation by plasma lipoproteins. It plays important roles, not only in preventing lipid peroxidation, but also in modulating several cell functions such as cell signaling and gene expression. While chylomicrons transport dietary alpha-tocopherol after intestinal absorption, LDL and HDL are the major carriers of alpha-tocopherol in fasting plasma and largely contribute to its delivery to cells and tissues. Exchanges of alpha-tocopherol occur between plasma lipoproteins. In addition, alpha-tocopherol transfers
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Oviedo, Landaverde Irene. "Disruption of LDL receptor-like gene function in Caenorhabditis elegans." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81419.

Texto completo da fonte
Resumo:
dsc-4(qm182), a mutation that suppresses the lengthened defecation cycle of clk-1 also suppresses the delay in germline development. dsc-4 encodes a putative orthologue of microsomal triglyceride transfer protein (MTP), a protein essential for the assembly and secretion of apo-B-containing low density lipoproteins (LDL). The effect of dsc-4 on clk-1(qm30), coupled to studies of apoB homologues in worms led to a model suggesting the possibility of using C. elegans in the study of LDL-like lipoprotein particles. The impact of the level of lipoproteins is particularly evident in the germli
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bouna, Moussa Tandia. "Interaction des complexes lipides cationiques / ADN avec les composants du plasma." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gellar, Lauren A. "The Effect of Glycemic Index and Glycemic Load on Glucose Control, Lipid Profiles and Anthropometrics Among Low-Income Latinos With Type 2 Diabetes: A Dissertation." eScholarship@UMMS, 2011. https://escholarship.umassmed.edu/gsbs_diss/522.

Texto completo da fonte
Resumo:
Background The incidence of type 2 diabetes has increased dramatically, particularly among Latinos. While several studies suggest the beneficial effect of lowering glycemic index and glycemic load in patients with type 2 diabetes, no data exists regarding this issue in the Latino population. The purpose of this study was to determine the effect of lowering glycemic index and glycemic load on diabetes control, lipid profiles and anthropometrics among Latinos with type 2 diabetes. Methods Subjects participated in a 12 month randomized clinical trial. The intervention targeted diabetes knowledge,
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

BURGNELLE-MAYEUR, CAMILLE. "Influence du gene de nanimse (dw) sur le metabolisme lipidique de la poule pondeuse." Paris 7, 1988. http://www.theses.fr/1988PA077024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Owen, Alice 1972. "The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins." 1999. http://web4.library.adelaide.edu.au/theses/09PH/09pho968.pdf.

Texto completo da fonte
Resumo:
Includes bibliographical references (leaves 172-217). Examines the effects of estrogens and phytoestrogens on plasma lipoprotein levels and other risk factors for cardiovascular disease, including the oxidisability of low density lipoprotein
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Owen, Alice 1972. "The effects of estrogens and phytoestrogens on the metabolism and oxidation of plasma lipoproteins / Alice Jane Owen." Thesis, 1999. http://hdl.handle.net/2440/19821.

Texto completo da fonte
Resumo:
Includes bibliographical references (leaves 172-217).<br>viii, 217 leaves : ill. ; 30 cm.<br>Examines the effects of estrogens and phytoestrogens on plasma lipoprotein levels and other risk factors for cardiovascular disease, including the oxidisability of low density lipoprotein<br>Thesis (Ph.D.)--University of Adelaide, Dept. of Physiology, 1999
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Blood lipoproteins Metabolism"

1

J, Halpern M., ed. Lipid metabolism and its pathology. New York: Plenum Press, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Workshop on Lipoprotein Heterogeneity (1986 Rockville, Md.). Proceedings of the Workshop on Lipoprotein Heterogeneity, Rockville, Maryland, September 29, 30, and October 1, 1986. Edited by Lippel Kenneth. [Bethesda, Md.]: U.S. Dept. of Health and Human Services, National Institutes of Health, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

John, Betteridge, Illingworth D. Roger 1945-, and Shepherd J. 1944-, eds. Lipoproteins in health and disease. London: Arnold, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

1945-, Fruchart J. C., and Shepherd J. 1944-, eds. Human plasma lipoproteins. Berlin: De Gruyter, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

International Dresden Lipid Symposium (9th 1997 Dresden, Germany). Advances in lipoprotein and atherosclerosis researh, diagnostic and treatment: Proceedings of the 9th International Dresden Lipid Symposium, held at Dresden, June 27-29, 1997. Edited by Hanefeld Markolf. Jena: G. Fischer, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

International Dresden Lipid Symposium (7th 1991 Dresden, Germany). Advances in lipoprotein and atherosclerosis research, diagnostics and treatment: Proceedings of the 7th International Dresden Lipid Symposium 1991 Held at Dresden, June 9-11, 1991. Edited by Dude H, Hanefeld Markolf, and Jaross W. Stuttgart: Gustav Fischer Verlag Jena, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

International Symposium on Drugs Affecting Lipid Metabolism (8th 1983 Philadelphia, Pa.). Drugs affecting lipid metabolism VIII. New York: Plenum Press, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

International Meeting on Atherosclerosis and Cardiovascular Diseases. (7th 1989 Bologna, Italy). Atherosclerosis and cardiovascular disease: 7° international meeting, Bologna, September 1989. Edited by Descovich G. C. Bologna: Editrice Compositori, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

International Meeting on Atherosclerosis and Cardiovascular Diseases. (6th 1986 Bologna, Italy). Atherosclerosis and cardiovascular diseases: 6° international meeting, Bologna, October 1986. Edited by Descovich G. C and Lenzi S. Bologna: Editrice Compositori, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Parker, James N., and Philip M. Parker. Abetalipoproteinemia: A bibliography and dictionary for physicians, patients, and genome researchers [to internet references]. San Diego, CA: ICON Health Publications, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Blood lipoproteins Metabolism"

1

Aviram, Michael. "Effect of Lipoproteins and Platelets on Macrophage Cholesterol Metabolism." In Blood Cell Biochemistry, 179–208. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9531-8_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bergmann, Sybille, Cornelia Mix, Gabriele Siegert, Catleen Uhlig, Peter Richter, and Werner Jaross. "Which Effects Does Early HRT Have on Perimenopausal Changes in the Lipoprotein Profile, Glucose Metabolism, and the Blood Coagulation-Fibrinolysis System?" In Medical Science Symposia Series, 135–39. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5560-1_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cegla, Jaimini, and James Scott. "Lipid disorders." In Oxford Textbook of Medicine, edited by Timothy M. Cox, 2055–97. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0232.

Texto completo da fonte
Resumo:
High blood cholesterol and high blood triglycerides are causal risk factors for atherosclerotic cardiovascular disease, which remains the leading cause of death in the developed world. Lipid and lipoprotein metabolism—cholesterol, triglycerides, and fat-soluble vitamins are transported with specific proteins in the blood as multimeric complexes called lipoproteins. Lipid and lipoprotein metabolism are effected by three principal physiological processes: (1) intestinal absorption of dietary lipid and transport in the blood of dietary lipid and lipids, principally derived from the liver (as triglyceride-rich lipoproteins) to peripheral tissues for catabolism by skeletal and cardiac muscle or storage in adipose tissue; (2) return of triglyceride-rich lipoprotein remnants to the liver, hepatic synthesis of low-density lipoprotein, and the transport of cholesterol between peripheral tissues and the liver; and (3) reverse cholesterol transport by high-density lipoprotein (HDL) between peripheral tissues and the liver. Dyslipidaemias are disorders of lipoprotein metabolism in which there is elevation of total cholesterol and/or triglycerides, often accompanied by reduced levels of HDL cholesterol. Causes of dyslipidaemia—particular lipid disorders including polygenic hypercholesterolaemia, familial hypercholesterolaemia, combined hypercholesterolaemia and hypertriglyceridaemia, familial combined hyperlipidaemia, familial dysbetalipoproteinaemia (also called type 3 hyperlipoproteinaemia), and severe hypertriglyceridaemia, as well as secondary or aggravating factors. Management of dyslipidaemia—the key questions are: (1) what classes of lipoproteins and lipids are increased or decreased in the patient’s plasma? (2) Does the patient has a primary (genetic) or secondary (acquired) dyslipidaemia (often contributions from both influences)? (3) Is the patient at risk of atherosclerotic cardiovascular disease or acute pancreatitis? (4) What other risk factors (e.g. hypertension or diabetes) are present? (5) What treatments might be used to address these abnormalities?
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Larry Durstine, J., and Andrea Summer. "Physical Activity, Exercise, Blood Lipids, and Lipoproteins." In Lipid Metabolism and Health, 265–82. CRC Press, 2005. http://dx.doi.org/10.1201/9781420038422.ch12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mc Auley, Mark T., and Amy E. Morgan. "Cholesterol transport in blood, lipoproteins, and cholesterol metabolism." In Cholesterol, 227–58. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85857-1.00025-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Si Nguyen, Van, Xuan Truong Tran, Thanh Duy Vo, and Quang Truong Le. "Residual Cardiovascular Risk Factors in Dyslipidemia." In Risk Factors for Cardiovascular Disease. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100046.

Texto completo da fonte
Resumo:
Cardiovascular disease poses a major challenge for the 21st century. Although good control of blood pressure and type 2 diabetes and reducing low-density lipoprotein-cholesterol levels can improve cardiovascular outcomes, a substantial residual risk remains existed after treatment in most patient populations. Recently, many efforts have been directed at finding the important role of low high-density-lipoprotein cholesterol, high triglycerides, especially triglyceride-rich lipoproteins and lipoprotein (a) in the metabolism of atherosclerotic plaque formation Therefore, based on the recent evidence, identification and treatment of these risk factors may play a role in optimizing therapeutic strategy, particularly in high risk subjects along with conventional treatment. In clinical practice, adequate attention should be paid when screening and managing residual cardiovascular risk factors in dyslipidemia in term of individualized approach. The ongoing trials will give more answers to elucidate this important area.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gelson, William, and Alexander Gimson. "Structure and function of the liver, biliary tract, and pancreas." In Oxford Textbook of Medicine, edited by Jack Satsangi, 3032–42. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0315.

Texto completo da fonte
Resumo:
The liver, sited in the right upper quadrant of the abdomen, comprises eight segments, each of which is a complete functional unit with a single portal pedicle and a hepatic vein. Within the functional segments, the structural unit is the hepatic lobule, a polyhedron surrounded by four to six portal tracts containing hepatic arterial and portal venous branches from which blood perfuses through sinusoids, surrounded by walls of hepatocytes that are a single cell thick and lined by specialized endothelial cells with ‘windows’ (fenestrae), to the centrilobular region and the central hepatic veins. Bile secreted through the canalicular membrane of the hepatocyte collects in biliary canaliculi, from which it passes through the biliary tract into the gut. The liver secretes bile, which aids digestion by emulsifying lipids, and has a central role in metabolism of (1) bilirubin, from haem; (2) bile salts, the principal mechanism for clearance of cholesterol; (3) carbohydrates; (4) amino acids and ammonia; (5) proteins, most circulating plasma proteins being produced by hepatocytes; and (6) lipid and lipoproteins. The pancreas lies in the retroperitoneum and is composed of (1) an exocrine portion centred on acini, producing an alkaline secretion containing digestive enzymes including serine proteases, exopeptidases, and lipolytic enzymes, draining through a ductal system into the duodenum; and (2) the islets of Langerhans, which secrete insulin (also glucagon, somatostatin, and pancreatic polypeptide).
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Elliott, Perry, Pier D. Lambiase, and Dhavendra Kumar. "Familial hypercholesterolaemia." In Inherited Cardiac Disease, 343–48. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198829126.003.0012.

Texto completo da fonte
Resumo:
Familial hypercholesterolaemia (FH) is an inborn error of metabolism that leads to accumulation of low-density lipoprotein cholesterol (LDL-C) particles in the blood and premature coronary artery atherosclerosis. This chapter covers the clinical criteria for the diagnosis of FH, the genetics that underpins the condition, cascade testing, premature coronary heart disease, and treatment methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Alhassan, Sofiya, and Peter Grandjean. "Essential Laboratory Methods for Blood Lipid and Lipoprotein Analysis." In Lipid Metabolism and Health, 117–45. CRC Press, 2005. http://dx.doi.org/10.1201/9781420038422.ch7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ejaz, Mahnoor, Areena Suhail Khan, Faiza Naseer, and Alvina Gul. "Metabolic Syndromes." In Omics Technologies for Clinical Diagnosis and Gene Therapy: Medical Applications in Human Genetics, 242–68. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079517122010018.

Texto completo da fonte
Resumo:
Metabolic Syndromes (MetS) are recognized as a cluster of risk factors which are known to increase the likelihood of obesity, type 2 diabetes (T2D) and cardiovascular disorders (CVDs). It is significant to understand disease pathology in order to discover a pathological mechanism leading to the development of MetS. Elevated triglycerides, increased blood pressure, hyperglycemia (increased blood glucose levels), low levels of High-density lipoprotein (HDL) cholesterol and elevated waist circumference are key parameters in diagnosing MetS. Various therapeutic interventions have been developed for treating metabolic diseases like polypills which are commonly known as combination pills, along with the fixed dose combinations. In addition to pharmacological handling, surgical treatment is also showing success in treating MetS such as Bariatric treatment. With the emerging experimental techniques, gene therapy allows the replacement of a defective gene with a healthy one, which may eventually reverse the disease. Leptin Gene Therapy, ZFN Gene Editing, CRISPR/ Cas9 genome editing are different platforms of gene therapy which are showing promising results in treating the metabolic disease. Novel experimental approaches and pharmacological treatments can provide a better insight into metabolic syndrome and its related complications, thereby reducing its global burden.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Blood lipoproteins Metabolism"

1

Prado, Vanildo, Daniel Buttros, Luciana Buttros de Paula, Benedito de Sousa Almeida Filho, Heloisa Maria de Luca Vespoli, Carla Kamya Pessoa, Eduardo Pessoa, and Eliana Aguiar Petri Nahás. "EVALUATION OF METABOLIC SYNDROME AND OBESITY IN BREAST CANCER SURVIVORS SUBJECTED TO INTERDISCIPLINARY APPROACH: A PROSPECTIVE COHORT STUDY." In Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2081.

Texto completo da fonte
Resumo:
Objective: The aim of this study was to assess the occurrence of metabolic syndrome (MetS), obesity, and abdominal obesity during the first year after a diagnosis of breast cancer. Methods: This prospective observational study included women with a recent diagnosis of breast cancer. Women aged ≥40 years, with a recent diagnosis of breast cancer, were included. The clinical, anthropometric, and biochemical analyses were performed. Women with three or more diagnostic criteria were considered with MetS as follows: waist circumference (WC) &gt; 88 cm; triglycerides (TG) ≥150 mg/dL; high-density li
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Al Kudsi, Dana Samir, Sara Zeyad Hamad, Hanan Mohamed Al Keldi, Abdelhamid Kerkadi, Abdelali Agouni, and Reem Omar Salih. "The Association between Zinc and Copper and Cardiometabolic Risk Factors in Adults." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0143.

Texto completo da fonte
Resumo:
Cardiometabolic risk (CMR) factors increase the likelihood of developing cardiovascular diseases (CVD). In Qatar, 24% of the total deaths are attributed to CVDs. Several nutritional disturbances have been linked to high risk of CVD. Many studies have discussed the effects of zinc (Zn) and copper (Cu) on CMR factors; however, evidence has been controversial. This investigated the association between CMR factors and the status of Zn, Cu, and Zn/Cu ratio. A total of 575 Qatari adults (≥18 years) were obtained from Qatar Biobank. Plasma levels of Zn and Cu were determined using inductively coupled
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!