Artigos de revistas sobre o tema "Cancer drug resistance, tumor metabolism"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cancer drug resistance, tumor metabolism".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yoo, Hee-Chan, e Jung-Min Han. "Amino Acid Metabolism in Cancer Drug Resistance". Cells 11, n.º 1 (2 de janeiro de 2022): 140. http://dx.doi.org/10.3390/cells11010140.
Texto completo da fonteChen, Xun, Shangwu Chen e Dongsheng Yu. "Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance". Metabolites 10, n.º 7 (16 de julho de 2020): 289. http://dx.doi.org/10.3390/metabo10070289.
Texto completo da fonteTiek, Deanna, e Shi-Yuan Cheng. "DNA damage and metabolic mechanisms of cancer drug resistance". Cancer Drug Resistance 5, n.º 2 (2022): 368–79. http://dx.doi.org/10.20517/cdr.2021.148.
Texto completo da fonteVarghese, Elizabeth, Samson Mathews Samuel, Alena Líšková, Marek Samec, Peter Kubatka e Dietrich Büsselberg. "Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer". Cancers 12, n.º 8 (12 de agosto de 2020): 2252. http://dx.doi.org/10.3390/cancers12082252.
Texto completo da fonteAlfarouk, Khalid O. "Tumor metabolism, cancer cell transporters, and microenvironmental resistance". Journal of Enzyme Inhibition and Medicinal Chemistry 31, n.º 6 (10 de fevereiro de 2016): 859–66. http://dx.doi.org/10.3109/14756366.2016.1140753.
Texto completo da fonteRoy, Sukanya, Subhashree Kumaravel, Ankith Sharma, Camille L. Duran, Kayla J. Bayless e Sanjukta Chakraborty. "Hypoxic tumor microenvironment: Implications for cancer therapy". Experimental Biology and Medicine 245, n.º 13 (27 de junho de 2020): 1073–86. http://dx.doi.org/10.1177/1535370220934038.
Texto completo da fonteMoiseenko, Fedor V., Nikita Volkov, Alexey Bogdanov, Michael Dubina e Vladimir Moiseyenko. "Resistance mechanisms to drug therapy in breast cancer and other solid tumors: An opinion". F1000Research 6 (17 de março de 2017): 288. http://dx.doi.org/10.12688/f1000research.10992.1.
Texto completo da fonteQian, Yanrong, Reetobrata Basu, Joseph Terry, Samuel Casey Mathes, Nathan Arnett, Cole Smith, Isaac Mendez-Gibson et al. "Antagonism of Growth Hormone Receptor Suppresses Cancer Growth and Drug Resistance in Mice". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1011—A1012. http://dx.doi.org/10.1210/jendso/bvab048.2069.
Texto completo da fonteWen, Gui-Min, Xiao-Yan Xu e Pu Xia. "Metabolism in Cancer Stem Cells: Targets for Clinical Treatment". Cells 11, n.º 23 (26 de novembro de 2022): 3790. http://dx.doi.org/10.3390/cells11233790.
Texto completo da fonteBhardwaj, Vikas, e Jun He. "Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer". International Journal of Molecular Sciences 21, n.º 10 (12 de maio de 2020): 3412. http://dx.doi.org/10.3390/ijms21103412.
Texto completo da fonteChen, Xun, Sufang Kuang, Yi He, Hongyu Li, Chen Yi, Yiming Li, Chao Wang, Guanhui Chen, Shangwu Chen e Dongsheng Yu. "The Differential Metabolic Response of Oral Squamous Cell Carcinoma Cells and Normal Oral Epithelial Cells to Cisplatin Exposure". Metabolites 12, n.º 5 (25 de abril de 2022): 389. http://dx.doi.org/10.3390/metabo12050389.
Texto completo da fonteChen, Xun, Sufang Kuang, Yi He, Hongyu Li, Chen Yi, Yiming Li, Chao Wang, Guanhui Chen, Shangwu Chen e Dongsheng Yu. "The Differential Metabolic Response of Oral Squamous Cell Carcinoma Cells and Normal Oral Epithelial Cells to Cisplatin Exposure". Metabolites 12, n.º 5 (25 de abril de 2022): 389. http://dx.doi.org/10.3390/metabo12050389.
Texto completo da fonteFunamizu, Naotake, Masahiko Honjo, Kei Tamura, Katsunori Sakamoto, Kohei Ogawa e Yasutsugu Takada. "microRNAs Associated with Gemcitabine Resistance via EMT, TME, and Drug Metabolism in Pancreatic Cancer". Cancers 15, n.º 4 (15 de fevereiro de 2023): 1230. http://dx.doi.org/10.3390/cancers15041230.
Texto completo da fonteWang, Qianyu, Xiaofei Shen, Gang Chen e Junfeng Du. "Drug Resistance in Colorectal Cancer: From Mechanism to Clinic". Cancers 14, n.º 12 (14 de junho de 2022): 2928. http://dx.doi.org/10.3390/cancers14122928.
Texto completo da fonteWangpaichitr, Medhi, George Theodoropoulos, Dan J. M. Nguyen, Chunjing Wu, Sydney A. Spector, Lynn G. Feun e Niramol Savaraj. "Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration". International Journal of Molecular Sciences 22, n.º 14 (9 de julho de 2021): 7379. http://dx.doi.org/10.3390/ijms22147379.
Texto completo da fonteKhan, Muhammad Muzamil, e Vladimir P. Torchilin. "Recent Trends in Nanomedicine-Based Strategies to Overcome Multidrug Resistance in Tumors". Cancers 14, n.º 17 (26 de agosto de 2022): 4123. http://dx.doi.org/10.3390/cancers14174123.
Texto completo da fonteXiong, Jixian, Tiantian Zhang, Penglin Lan, Shuhong Zhang e Li Fu. "Insight into the molecular mechanisms of gastric cancer stem cell in drug resistance of gastric cancer". Cancer Drug Resistance 5, n.º 3 (2022): 794–813. http://dx.doi.org/10.20517/cdr.2022.11.
Texto completo da fonteSrivani, Gowru, Sujatha Peela, Afroz Alam e Ganji Purnachandra Nagaraju. "Gemcitabine for Pancreatic Cancer Therapy". Cancer Plus 3, n.º 3 (25 de julho de 2021): 20. http://dx.doi.org/10.18063/cp.v3i3.323.
Texto completo da fonteHekmatshoar, Yalda, Jean Nakhle, Mireille Galloni e Marie-Luce Vignais. "The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance". Biochemical Journal 475, n.º 14 (31 de julho de 2018): 2305–28. http://dx.doi.org/10.1042/bcj20170712.
Texto completo da fonteGermain, Nicolas, Mélanie Dhayer, Marie Boileau, Quentin Fovez, Jerome Kluza e Philippe Marchetti. "Lipid Metabolism and Resistance to Anticancer Treatment". Biology 9, n.º 12 (16 de dezembro de 2020): 474. http://dx.doi.org/10.3390/biology9120474.
Texto completo da fonteGarcía-Heredia, José Manuel, e Amancio Carnero. "Role of Mitochondria in Cancer Stem Cell Resistance". Cells 9, n.º 7 (15 de julho de 2020): 1693. http://dx.doi.org/10.3390/cells9071693.
Texto completo da fonteCrump, Lyndsey, Jennifer K. Richer, Weston Porter e Traci Lyons. "Hormonal Regulation of Semaphorin 7a Promotes Therapeutic Resistance in Breast Cancer". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1021—A1022. http://dx.doi.org/10.1210/jendso/bvab048.2090.
Texto completo da fonteSradhanjali, Swatishree, e Mamatha M. Reddy. "Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer". Current Topics in Medicinal Chemistry 18, n.º 6 (28 de junho de 2018): 444–53. http://dx.doi.org/10.2174/1568026618666180523105756.
Texto completo da fontePinto, Vanessa, Rui Bergantim, Hugo R. Caires, Hugo Seca, José E. Guimarães e M. Helena Vasconcelos. "Multiple Myeloma: Available Therapies and Causes of Drug Resistance". Cancers 12, n.º 2 (10 de fevereiro de 2020): 407. http://dx.doi.org/10.3390/cancers12020407.
Texto completo da fonteCheng, Yue, Yao Xie, Yan Chen e Xiaojing Liu. "Epigenetic Regulation and Nonepigenetic Mechanisms of Ferroptosis Drive Emerging Nanotherapeutics in Tumor". Oxidative Medicine and Cellular Longevity 2021 (29 de janeiro de 2021): 1–14. http://dx.doi.org/10.1155/2021/8854790.
Texto completo da fonteGodel, Martina, Giacomo Ortone, Dario Pasquale Anobile, Martina Pasino, Giulio Randazzo, Chiara Riganti e Joanna Kopecka. "Targeting Mitochondrial Oncometabolites: A New Approach to Overcome Drug Resistance in Cancer". Pharmaceutics 13, n.º 5 (20 de maio de 2021): 762. http://dx.doi.org/10.3390/pharmaceutics13050762.
Texto completo da fonteLi, Jianneng, Michael Berk, Mohammad Alyamani, Navin Sabharwal, Christopher Goins, Joseph Alvarado, Mehdi Baratchian et al. "Hexose-6-phosphate dehydrogenase blockade reverses prostate cancer drug resistance in xenograft models by glucocorticoid inactivation". Science Translational Medicine 13, n.º 595 (26 de maio de 2021): eabe8226. http://dx.doi.org/10.1126/scitranslmed.abe8226.
Texto completo da fonteXu, Qingwen, Yuxi Liu, Wen Sun, Tiantian Song, Xintong Jiang, Kui Zeng, Su Zeng, Lu Chen e Lushan Yu. "Blockade LAT1 Mediates Methionine Metabolism to Overcome Oxaliplatin Resistance under Hypoxia in Renal Cell Carcinoma". Cancers 14, n.º 10 (22 de maio de 2022): 2551. http://dx.doi.org/10.3390/cancers14102551.
Texto completo da fonteBedeschi, Martina, Noemi Marino, Elena Cavassi, Filippo Piccinini e Anna Tesei. "Cancer-Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance". Cells 12, n.º 5 (4 de março de 2023): 802. http://dx.doi.org/10.3390/cells12050802.
Texto completo da fonteEl-Heliebi, Amin, Tadeja Urbanic-Purkart, Kariem Mahdy-Ali, Christina Skofler, Lisa Gerlitz, Stefanie Stanzer, Joakim Franz et al. "EXTH-04. PATIENT-DERIVED CELLS FOR EX VIVO DRUG SCREENING STUDIES OF GLIOMAS". Neuro-Oncology 24, Supplement_7 (1 de novembro de 2022): vii209. http://dx.doi.org/10.1093/neuonc/noac209.803.
Texto completo da fonteZhu, Pengfei, Hongrui Lu, Mingxing Wang, Ke Chen, Zheling Chen e Liu Yang. "Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment". Cancer Biology & Medicine 20, n.º 1 (12 de janeiro de 2023): 44–55. http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0491.
Texto completo da fonteLiu, Mengfang, Na Liu, Jinlei Wang, Shengqiao Fu, Xu Wang e Deyu Chen. "Acetyl-CoA Synthetase 2 as a Therapeutic Target in Tumor Metabolism". Cancers 14, n.º 12 (12 de junho de 2022): 2896. http://dx.doi.org/10.3390/cancers14122896.
Texto completo da fonteBenej, Martin, Jinghai Wu, McKenzie Kreamer, Martin Kery, Sergio Corrales-Guerrero, Ioanna Papandreou, Terence M. Williams et al. "Pharmacological Regulation of Tumor Hypoxia in Model Murine Tumors and Spontaneous Canine Tumors". Cancers 13, n.º 7 (3 de abril de 2021): 1696. http://dx.doi.org/10.3390/cancers13071696.
Texto completo da fonteBondarenko, Maryna, Marion Le Grand, Yuval Shaked, Ziv Raviv, Guillemette Chapuisat, Cécile Carrère, Marie-Pierre Montero et al. "Metronomic Chemotherapy Modulates Clonal Interactions to Prevent Drug Resistance in Non-Small Cell Lung Cancer". Cancers 13, n.º 9 (7 de maio de 2021): 2239. http://dx.doi.org/10.3390/cancers13092239.
Texto completo da fonteTian, Tian, Xiaoyi Li e Jinhua Zhang. "mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy". International Journal of Molecular Sciences 20, n.º 3 (11 de fevereiro de 2019): 755. http://dx.doi.org/10.3390/ijms20030755.
Texto completo da fonteCheng, Hui, Meng Wang, Jingjing Su, Yueyue Li, Jiao Long, Jing Chu, Xinyu Wan, Yu Cao e Qinglin Li. "Lipid Metabolism and Cancer". Life 12, n.º 6 (25 de maio de 2022): 784. http://dx.doi.org/10.3390/life12060784.
Texto completo da fonteBradshaw, D. M., e R. J. Arceci. "Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance." Journal of Clinical Oncology 16, n.º 11 (novembro de 1998): 3674–90. http://dx.doi.org/10.1200/jco.1998.16.11.3674.
Texto completo da fonteMaloney, Sara M., Camden A. Hoover, Lorena V. Morejon-Lasso e Jenifer R. Prosperi. "Mechanisms of Taxane Resistance". Cancers 12, n.º 11 (10 de novembro de 2020): 3323. http://dx.doi.org/10.3390/cancers12113323.
Texto completo da fonteAchkar, Iman W., Sara Kader, Shaima S. Dib, Kulsoom Junejo, Salha Bujassoum Al-Bader, Shahina Hayat, Aditya M. Bhagwat et al. "Metabolic Signatures of Tumor Responses to Doxorubicin Elucidated by Metabolic Profiling in Ovo". Metabolites 10, n.º 7 (28 de junho de 2020): 268. http://dx.doi.org/10.3390/metabo10070268.
Texto completo da fonteWu, Tai-Na, Hui-Ming Chen e Lie-Fen Shyur. "Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment". International Journal of Molecular Sciences 22, n.º 24 (17 de dezembro de 2021): 13571. http://dx.doi.org/10.3390/ijms222413571.
Texto completo da fonteCaldas-Lopes, Eloisi, Alexandra Gomez-Arteaga e Monica L. Guzman. "Approaches to Targeting Cancer Stem Cells in Solid Tumors". Current Stem Cell Research & Therapy 14, n.º 5 (4 de julho de 2019): 421–27. http://dx.doi.org/10.2174/1574888x14666190222164429.
Texto completo da fonteMayayo-Peralta, Isabel, Wilbert Zwart e Stefan Prekovic. "Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene?" Endocrine-Related Cancer 28, n.º 6 (1 de junho de 2021): R157—R171. http://dx.doi.org/10.1530/erc-20-0489.
Texto completo da fonteSamuel, Samson Mathews, Elizabeth Varghese, Lenka Koklesová, Alena Líšková, Peter Kubatka e Dietrich Büsselberg. "Counteracting Chemoresistance with Metformin in Breast Cancers: Targeting Cancer Stem Cells". Cancers 12, n.º 9 (1 de setembro de 2020): 2482. http://dx.doi.org/10.3390/cancers12092482.
Texto completo da fonteKulkarni, Prateek, Reetobrata Basu e John J. Kopchick. "Effects of Growth Hormone on Pancreatic Cancer Derived Exosomes". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A1016—A1017. http://dx.doi.org/10.1210/jendso/bvab048.2079.
Texto completo da fonteXavier, Cristina P. R., Hugo R. Caires, Mélanie A. G. Barbosa, Rui Bergantim, José E. Guimarães e M. Helena Vasconcelos. "The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance". Cells 9, n.º 5 (6 de maio de 2020): 1141. http://dx.doi.org/10.3390/cells9051141.
Texto completo da fontePark, Jae Hyung, Woo Yang Pyun e Hyun Woo Park. "Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets". Cells 9, n.º 10 (16 de outubro de 2020): 2308. http://dx.doi.org/10.3390/cells9102308.
Texto completo da fonteLiang, Xiaojie, Zhihuan You, Xinhao Chen e Jun Li. "Targeting Ferroptosis in Colorectal Cancer". Metabolites 12, n.º 8 (12 de agosto de 2022): 745. http://dx.doi.org/10.3390/metabo12080745.
Texto completo da fonteMichael, M., e M. M. Doherty. "Tumoral Drug Metabolism: Overview and Its Implications for Cancer Therapy". Journal of Clinical Oncology 23, n.º 1 (1 de janeiro de 2005): 205–29. http://dx.doi.org/10.1200/jco.2005.02.120.
Texto completo da fonteFilipiak-Duliban, Aleksandra, Klaudia Brodaczewska, Arkadiusz Kajdasz e Claudine Kieda. "Spheroid Culture Differentially Affects Cancer Cell Sensitivity to Drugs in Melanoma and RCC Models". International Journal of Molecular Sciences 23, n.º 3 (21 de janeiro de 2022): 1166. http://dx.doi.org/10.3390/ijms23031166.
Texto completo da fonteHuang, Tao, Jae Sam Lee, Alexander L. Klibanov e Jiang He. "Molecular Radiotherapy with 177Lu-Immunoliposomes Induces Cytotoxicity in Mesothelioma Cancer Stem Cells In Vitro". International Journal of Molecular Sciences 23, n.º 7 (1 de abril de 2022): 3914. http://dx.doi.org/10.3390/ijms23073914.
Texto completo da fonte