Literatura científica selecionada sobre o tema "Carbon nanodot"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Carbon nanodot".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Carbon nanodot"
Liu, Jing, Miftakhul Huda, Zulfakri bin Mohamad, Hui Zhang, You Yin e Sumio Hosaka. "Fabrication of Carbon Nanodot Arrays with a Pitch of 20 nm for Pattern-Transfer of PDMS Self-Assembled Nanodots". Key Engineering Materials 596 (dezembro de 2013): 88–91. http://dx.doi.org/10.4028/www.scientific.net/kem.596.88.
Texto completo da fonteYue, Yuxue, Bolin Wang, Saisai Wang, Chunxiao Jin, Jinyue Lu, Zheng Fang, Shujuan Shao et al. "Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination". Chemical Communications 56, n.º 38 (2020): 5174–77. http://dx.doi.org/10.1039/c9cc09701e.
Texto completo da fonteJung, Hyun Kyung, e Hyung Woo Lee. "Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/270989.
Texto completo da fontePai, Yi-Hao, e Gong-Ru Lin. "Electrochemical Reduction of Uniformly Dispersed Pt and Ag Nanodots on Carbon Fiber Electrodes". Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/384601.
Texto completo da fonteBiswas, Abhijit, Subir Paul e Arindam Banerjee. "Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties". Journal of Materials Chemistry A 3, n.º 29 (2015): 15074–81. http://dx.doi.org/10.1039/c5ta03355a.
Texto completo da fonteAkahane, Takashi, Takuya Komori, Jing Liu, Miftakhul Huda, Zulfakri bin Mohamad, You Yin e Sumio Hosaka. "Improved Observation Contrast of Block-Copolymer Nanodot Pattern Using Carbon Hard Mask (CHM)". Key Engineering Materials 534 (janeiro de 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/kem.534.126.
Texto completo da fonteLiu, Xue, Xiuping Tang, Yu Hou, Qiuhua Wu e Guolin Zhang. "Fluorescent nanothermometers based on mixed shell carbon nanodots". RSC Advances 5, n.º 99 (2015): 81713–22. http://dx.doi.org/10.1039/c5ra12541c.
Texto completo da fonteIhwan, Muh Al, e Zuhdan Kun Prasetyo. "Utilization of Corn Oil as a Photocatalyst of Carbon Nanodots for Wastewater Cleaning". Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, n.º 2 (8 de outubro de 2022): 171–78. http://dx.doi.org/10.26740/jpfa.v11n2.p171-178.
Texto completo da fonteSun, Ming-Ye, You-Jin Zheng, Lei Zhang, Li-Ping Zhao e Bing Zhang. "Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO 2 nanocomposites under visible light". Chinese Physics B 26, n.º 5 (maio de 2017): 058101. http://dx.doi.org/10.1088/1674-1056/26/5/058101.
Texto completo da fonteKnoblauch, Rachael, Amanda Harvey, Estelle Ra, Ken M. Greenberg, Judy Lau, Elizabeth Hawkins e Chris D. Geddes. "Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots". Nanoscale 13, n.º 1 (2021): 85–99. http://dx.doi.org/10.1039/d0nr06842j.
Texto completo da fonteTeses / dissertações sobre o assunto "Carbon nanodot"
Sahakalkan, Serhat [Verfasser], e David [Akademischer Betreuer] Wharam. "Spin Transport in Carbon Nanotubes with Circular Nanodot Contacts / Serhat Sahakalkan ; Betreuer: David Wharam". Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1182985432/34.
Texto completo da fonteKim, Tak Hyuan. "Synthesis and Applications of Carbon Nanodots". Thesis, Griffith University, 2016. http://hdl.handle.net/10072/366029.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Sciortino, Alice. "The Fundamental Photophysics of Fluorescent Carbon Nanodots". Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4125.
Texto completo da fonteBRUNO, Federico. "OPTICAL SENSING OF POLLUTANTS BY FLUORESCENT CARBON NANODOTS". Doctoral thesis, Università degli Studi di Palermo, 2022. http://hdl.handle.net/10447/560721.
Texto completo da fonteCarrara, Serena. "Towards new efficient nanostructured hybrid materials for ECL applications". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF016/document.
Texto completo da fonteThis doctoral dissertation aim to develop new hybrid materials for ECL applications. In the field of metal complexes, the electrochemiluminescent properties of new Pt(II) and Ir(III) complexes were investigated as alternative of existing complexes. Passing to nanomaterials, the combination of labels and NCNDs bearing primary or tertiary groups on the surface as alternative co-reactant species resulted an interesting strategy to eliminate the toxic TPrA. In particular, NCNDs in covalently linked system with metal complexes is not only an innocent carrier for ECL active species, but act also as co-reactant in the ECL process, revealing itself an ECL self-enhancing platform. Finally, a real immunoassay for cardiac marker detection has been built with enhanced sensitivity and stability, which is of fundamental importance for biological and bio-medical detection applications. The same technology can be applied to a variety of other analytes opening the venue to other assays
Yeom, Sin Hea. "TEMPERATURE-DEPENDENT TUNABLE PHOTOLUMINESCENCE PROPERTIES OF CARBON NANODOTS DERIVED FROM POLYETHYLENE GLYCOL". UKnowledge, 2014. http://uknowledge.uky.edu/chemistry_etds/46.
Texto completo da fonteNewman, Peter Lionel Harry. "Carbon Nanotubes for Bone Tissue Engineering". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16308.
Texto completo da fonteRolihlahla, Bangile Noel. "Electrochemistry and photophysics of carbon nanodots-decorated nigs(Ni(In, Ga)Se2) quantum dots". university of western cape, 2020. http://hdl.handle.net/11394/7309.
Texto completo da fonteCurrently, non-renewable sources are mostly used to meet the ever-growing demand for energy. However, these sources are not sustainable. In addition to these energy sources being not sustainable, they are bad for the environment although the energy supply sectors highly depend on them. To address such issues the use of renewable energy sources has been proven to be beneficial for the supply of energy for the global population and its energy needs. Advantageous over non-renewable sources, renewable energy plays a crucial role in minimizing the use of fossil fuel and reduces greenhouse gases. Minimizing use of fossil fuels and greenhouse gases is important, because it helps in the fight against climate change. The use of renewable energy sources can also lead to less air pollution and improved air quality. Although solar energy is the most abundant source of renewable energy that can be converted into electrical energy using various techniques, there are some limitations. Among these techniques are photovoltaic cells which are challenged by low efficiencies and high costs of material fabrication. Hence, current research and innovations are sought towards the reduction of costs and increasing the efficiency of the renewable energy conversion devices.
Li, Yibing. "Graphitic Carbon-Based Functional Nanomaterials for Environmental Remediation and Energy Conversion Applications". Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366091.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Yan, Huijie [Verfasser], e Alf [Akademischer Betreuer] Mews. "Triple labelled gold nanoparticles and fluorescent carbon nanodots as platforms for cell/nanoparticles interaction studies / Huijie Yan ; Betreuer: Alf Mews". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1215840527/34.
Texto completo da fonteLivros sobre o assunto "Carbon nanodot"
1961-, Dai Liming, ed. Carbon nanotechnology: Recent developments in chemistry, physics, materials science and applications. Amsterdam: Elsevier, 2006.
Encontre o texto completo da fontePhysical Properties of Carbon Nanotubes. World Scientific Publishing Company, 1998.
Encontre o texto completo da fonteNews, World Spaceflight. 21st Century Complete Guide to Space Flight and Nanotechnology: NASA Research into Nanoscale Materials for Future Spacecraft, Rockets, and Space Exploration Programs ¿ Robotics, Sensors, Nanobots, Carbon Nanotubes, Nanowires, Nanofluidics, Tethers, Artificial Intelligence, Rovers, Dozens of Movie Animations (CD-ROM). Progressive Management, 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Carbon nanodot"
Huang, Hui, Yang Liu e Zhenhui Kang. "Carbon Nanodot Composites: Fabrication, Properties, and Environmental and Energy Applications". In Novel Carbon Materials and Composites, 223–73. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119313649.ch8.
Texto completo da fonteJiang, Shan, Kornelia Gawlitza e Knut Rurack. "Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell". In Molecularly Imprinted Polymers, 195–208. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1_17.
Texto completo da fonteQi, Bao-Ping, Guo-Jun Zhang, Zhi-Ling Zhang e Dai-Wen Pang. "Photoluminescent Properties of Carbon Nanodots". In Carbon Nanoparticles and Nanostructures, 239–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28782-9_7.
Texto completo da fonteZhang, Xiaodong, Xiaokai Chen e Fu-Gen Wu. "Carbon Nanodots for Cell Imaging". In Fluorescent Materials for Cell Imaging, 49–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5062-1_3.
Texto completo da fonteJung, Yun Kyung, Yuri Choi e Byeong-Su Kim. "Functionalized Carbon Nanodots for Biomedical Applications". In Springer Series in Biomaterials Science and Engineering, 299–317. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22861-7_10.
Texto completo da fonteLemberger, Michael-M., Thomas Hirsch e Joachim Wegener. "Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications". In Measuring Biological Impacts of Nanomaterials, 135–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/11663_2014_11.
Texto completo da fonteChoudhury, Biswajit. "Chapter 8. Composites of Carbon Nanodots for Hydrogen Energy Generation". In All-carbon Composites and Hybrids, 173–95. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00173.
Texto completo da fonteLiang, J. N., e X. H. Yang. "Carbon Nanodots Doped Graphite Carbon Nitride Towards Highly Efficient Visible Light Driven-Photocatalytic Hydrogen Evolution". In Springer Proceedings in Physics, 1–12. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1774-5_1.
Texto completo da fonteLi, H., Z. Lin e D. Fu. "Carbon paper electrode coated with TiO2 nanorod arrays for electro-assisted photocatalytic degradation of Cr (VI) and methylene blue". In Advances in Energy and Environment Research, 49–52. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-11.
Texto completo da fonteAlaş, Melis Özge, e Rükan Genç. "Carbon nanodot integrated solar energy devices". In Sustainable Material Solutions for Solar Energy Technologies, 497–535. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-821592-0.00017-0.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Carbon nanodot"
Chen, Taihao, Yong Fang, Chifeng Song, Keyang Zhang, Yifan Gao, Zikang Han e Zhiwei Zhao. "A Vertical Structured Solar-blind Ultraviolet Photodetector Based on the Carbon Nanodot/Graphene Heterojunction". In 2022 5th International Conference on Circuits, Systems and Simulation (ICCSS). IEEE, 2022. http://dx.doi.org/10.1109/iccss55260.2022.9802226.
Texto completo da fonteMathew, Raji Mary, Elsa Susan Zachariah, Jasmine Jose, Jancy John, Timi Titus e Vinoy Thomas. "Optically active carbon nanodot—A facile platform for the selective sensing of chromium (VI) ion". In 16TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-16). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0030184.
Texto completo da fonteZABELINA, Anna, Denis ZABELIN, Vaclav ŠVORČÍK e Oleksiy LYUTAKOV. "PHOTOCATALYTIC HYDROGENATION OF carbon-carbon TRIPLE BOND". In NANOCON 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/nanocon.2021.4334.
Texto completo da fonteKang, Zhenhui. "Carbon nanodots promise catalytic applications". In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu2c.2.
Texto completo da fonteNOVIKOV, Vseslav, Marina KOVALEVA, Igor GONCHAROV, Maxim YAPRYNTSEV, Yuri TYURIN, Viacheslav SIROTA e Olga VAGINA. "STRUCTURAL-PHASE STATE OF NANOCOMPOSITE ZrB2-MoSi2 COATINGS FOR CARBON/CARBON COMPOSITES DEPOSITED BY A NEW MULTI-CHAMBER DETONATION ACCELERATOR". In NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8657.
Texto completo da fonteHOLEC, Pavel, Ivan ULMAN, Radek JIRKOVEC e Jakub VANĚK. "Production of fibrous composite material with incorporated activated carbon". In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3705.
Texto completo da fontePRICILLA, R. Blessy, David ŠKODA, Pavel URBÁNEK, Michal URBÁNEK e Ivo KUŘITKA. "FACILE MICROWAVE –ASSISTED SYNTHESIS OF CASEIN DERIVED CARBON NANODOTS". In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3681.
Texto completo da fonteNOVOTNÁ, Jana, Blanka TOMKOVÁ e Jana MÜLLEROVÁ. "DIELECTRICAL ANALYSIS OF COMPOSITE MATERIALS WITH RECYCLED CARBON FIBERS". In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3690.
Texto completo da fonteMARQUES, Susana C. R., e Jan FILIP. "Carbon materials prepared from cigarette filters APPLIED for clofibric acid adorption". In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3733.
Texto completo da fonteSLOBODIAN, Rostislav, Robert OLEJNÍK, Jiří MATYÁŠ e Petr SLOBODIAN. "The sensing properties of carbon nanotube filled copolymers for VOC vapors detection". In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3695.
Texto completo da fonte