Siga este link para ver outros tipos de publicações sobre o tema: Carbon nanodot.

Artigos de revistas sobre o tema "Carbon nanodot"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Carbon nanodot".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Liu, Jing, Miftakhul Huda, Zulfakri bin Mohamad, Hui Zhang, You Yin e Sumio Hosaka. "Fabrication of Carbon Nanodot Arrays with a Pitch of 20 nm for Pattern-Transfer of PDMS Self-Assembled Nanodots". Key Engineering Materials 596 (dezembro de 2013): 88–91. http://dx.doi.org/10.4028/www.scientific.net/kem.596.88.

Texto completo da fonte
Resumo:
We investigated the fabrication of self-assembled nanodot array using poly (styrene)-poly (dimethyl-siloxane) (PS-PDMS) block copolymer and its transfer technique as a promising method to fabricate magnetic nanodot arrays for ultrahigh density recording. A carbon (C) layer with a high etch-resistance was especially adopted for magnetic nanodot fabrication. We fabricated PDMS nanodot using PS-PDMS block copolymer with a molecular mass of 11,700-2,900 g/mol. The nanodots were first transferred into silicon (Si) layer and then into C layer on Si substrate by carbon tetrafluoride (CF4) and oxygen (O2) reactive ion etching (RIE), respectively. We succeeded in fabricating C nanodots with a diameter of 10 nm and an average pitch of 20 nm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Yue, Yuxue, Bolin Wang, Saisai Wang, Chunxiao Jin, Jinyue Lu, Zheng Fang, Shujuan Shao et al. "Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination". Chemical Communications 56, n.º 38 (2020): 5174–77. http://dx.doi.org/10.1039/c9cc09701e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jung, Hyun Kyung, e Hyung Woo Lee. "Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/270989.

Texto completo da fonte
Resumo:
The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction) was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pai, Yi-Hao, e Gong-Ru Lin. "Electrochemical Reduction of Uniformly Dispersed Pt and Ag Nanodots on Carbon Fiber Electrodes". Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/384601.

Texto completo da fonte
Resumo:
Electrochemical characterization of the uniformly dispersed Pt and Ag nanodots synthesized after in situ scalable electron-beam reduction on copper grid and carbon-fiber electrode is demonstrated. By employing plasma pretreatment to produce functional organosilicon micronetworks-based reaction sites on copper grid, the size and standard deviation of the electrochemically reduced metallic nanodots can be strictly confined. When detuning the accelerating voltage of electron-beam from 3 to 120 kV, the reshaped nanodot diameter enlarges from12.7±0.8to18.3±3.6 nm due to the gradual self-aggregation. In comparison with sputtering method, the electroactivity of Pt nanodot covered carbon fiber electrode obtained after electron-beam reduction exhibits a larger electroactive surface (Spt) of 16.56 cm2/mg. The electron-beam reduction provides a better dispersion of the reduced Pt nanodots based catalysts on carbon-fiber electrode, promoting the utilization efficiency of these nanoscale catalyst (defined as the ratio of electroactive to geometric area) from 2.5% to 7%.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Biswas, Abhijit, Subir Paul e Arindam Banerjee. "Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties". Journal of Materials Chemistry A 3, n.º 29 (2015): 15074–81. http://dx.doi.org/10.1039/c5ta03355a.

Texto completo da fonte
Resumo:
Peptide functionalized carbon nanodot supported Ru nanodots have been synthesized, which show a remarkable and reusable catalytic activity for the transformation of organic azide to the corresponding amine in the presence of other functional groups in water.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Akahane, Takashi, Takuya Komori, Jing Liu, Miftakhul Huda, Zulfakri bin Mohamad, You Yin e Sumio Hosaka. "Improved Observation Contrast of Block-Copolymer Nanodot Pattern Using Carbon Hard Mask (CHM)". Key Engineering Materials 534 (janeiro de 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/kem.534.126.

Texto completo da fonte
Resumo:
In this work, improvement of the observation contrast was investigated by using a carbon film as the hard mask for pattern transfer of block copolymer (BCP) nanodots. The PS-PDMS (Poly (styrene-b-dimethyl siloxane)) block copolymer was adopted here. The observation contrast was greatly improved after transferring block copolymer (BCP) nanodots pattern to the underlying Si substrate through the carbon hard mask compared that before nanodot pattern transfer. Pattern transfer was also demonstrated to be very effective using carbon hard mask.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Liu, Xue, Xiuping Tang, Yu Hou, Qiuhua Wu e Guolin Zhang. "Fluorescent nanothermometers based on mixed shell carbon nanodots". RSC Advances 5, n.º 99 (2015): 81713–22. http://dx.doi.org/10.1039/c5ra12541c.

Texto completo da fonte
Resumo:
Nanothermometers composed of a carbon nanodot core and thermo-sensitive polymeric mixed shell are prepared. Solution temperature can be traced through monitoring the fluorescence intensity variation of carbon nanodot.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ihwan, Muh Al, e Zuhdan Kun Prasetyo. "Utilization of Corn Oil as a Photocatalyst of Carbon Nanodots for Wastewater Cleaning". Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, n.º 2 (8 de outubro de 2022): 171–78. http://dx.doi.org/10.26740/jpfa.v11n2.p171-178.

Texto completo da fonte
Resumo:
Water is a basic need of society. Unfortunately, the availability of clean water is very limited due to the large amount of waste in the waters in various regions in Indonesia. Thus, innovation is needed to purify wastewater. This research utilizes corn oil to reduce the pollution of dye waste, which is a problem for the environment. Corn oil is easy to find so it is suitable to be used to purify water waste. The photocatalyst technique using carbon nanodots of sun-assisted corn oil is an economical and easy-to-obtain method. Carbon nanodots from corn oil are made using the Hydrothermal method at a temperature of 2500oC heated for 3 hours. Carbon nanodots from corn oil are used as a photocatalyst in artificial methylene blue waste solutions. The photocatalyst test process is carried out by varying the amount of carbon dots. The result was observed until the artificial wastewater from methylene blue turned clear by varying a lot of carbon from 2 ml, 4 ml, 6 ml, 8 ml, and 10 ml. When the carbon nanodot content is 8 ml, the fastest time needed to clear methylene blue wastewater is 55 minutes. The fewer or more solutions given, the more time to clear up. These results indicate that carbon nanodots from corn oil can be used for photocatalyst purification of methylene blue wastewater.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sun, Ming-Ye, You-Jin Zheng, Lei Zhang, Li-Ping Zhao e Bing Zhang. "Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO 2 nanocomposites under visible light". Chinese Physics B 26, n.º 5 (maio de 2017): 058101. http://dx.doi.org/10.1088/1674-1056/26/5/058101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Knoblauch, Rachael, Amanda Harvey, Estelle Ra, Ken M. Greenberg, Judy Lau, Elizabeth Hawkins e Chris D. Geddes. "Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots". Nanoscale 13, n.º 1 (2021): 85–99. http://dx.doi.org/10.1039/d0nr06842j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Borenstein, Arie, Volker Strauss, Matthew D. Kowal, Mackenzie Anderson e Richard B. Kaner. "Carbon Nanodots: Laser‐Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation (Small 52/2019)". Small 15, n.º 52 (dezembro de 2019): 1970285. http://dx.doi.org/10.1002/smll.201970285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Dunphy, Andrew, Kamal Patel, Sarah Belperain, Aubrey Pennington, Norman Chiu, Ziyu Yin, Xuewei Zhu et al. "Modulation of Macrophage Polarization by Carbon Nanodots and Elucidation of Carbon Nanodot Uptake Routes in Macrophages". Nanomaterials 11, n.º 5 (26 de abril de 2021): 1116. http://dx.doi.org/10.3390/nano11051116.

Texto completo da fonte
Resumo:
Atherosclerosis represents an ever-present global concern, as it is a leading cause of cardiovascular disease and an immense public welfare issue. Macrophages play a key role in the onset of the disease state and are popular targets in vascular research and therapeutic treatment. Carbon nanodots (CNDs) represent a type of carbon-based nanomaterial and have garnered attention in recent years for potential in biomedical applications. This investigation serves as a foremost attempt at characterizing the interplay between macrophages and CNDs. We have employed THP-1 monocyte-derived macrophages as our target cell line representing primary macrophages in the human body. Our results showcase that CNDs are non-toxic at a variety of doses. THP-1 monocytes were differentiated into macrophages by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) and co-treatment with 0.1 mg/mL CNDs. This co-treatment significantly increased the expression of CD 206 and CD 68 (key receptors involved in phagocytosis) and increased the expression of CCL2 (a monocyte chemoattractant and pro-inflammatory cytokine). The phagocytic activity of THP-1 monocyte-derived macrophages co-treated with 0.1 mg/mL CNDs also showed a significant increase. Furthermore, this study also examined potential entrance routes of CNDs into macrophages. We have demonstrated an inhibition in the uptake of CNDs in macrophages treated with nocodazole (microtubule disruptor), N-phenylanthranilic acid (chloride channel blocker), and mercury chloride (aquaporin channel inhibitor). Collectively, this research provides evidence that CNDs cause functional changes in macrophages and indicates a variety of potential entrance routes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hasenöhrl, Dominik H., Avishek Saha, Volker Strauss, Leonie Wibmer, Stefanie Klein, Dirk M. Guldi e Andreas Hirsch. "Bulbous gold–carbon nanodot hybrid nanoclusters for cancer therapy". Journal of Materials Chemistry B 5, n.º 43 (2017): 8591–99. http://dx.doi.org/10.1039/c7tb02039b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Liu, Guangxing, Hua Chai, Yuguo Tang e Peng Miao. "Bright carbon nanodots for miRNA diagnostics coupled with concatenated hybridization chain reaction". Chemical Communications 56, n.º 8 (2020): 1175–78. http://dx.doi.org/10.1039/c9cc08753b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gomez, I. Jennifer, Blanca Arnaiz, Michele Cacioppo, Francesca Arcudi e Maurizio Prato. "Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel". Journal of Materials Chemistry B 6, n.º 35 (2018): 5540–48. http://dx.doi.org/10.1039/c8tb01796d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Buiculescu, Raluca, Dimitrios Stefanakis, Maria Androulidaki, Demetrios Ghanotakis e Nikos A. Chaniotakis. "Controlling carbon nanodot fluorescence for optical biosensing". Analyst 141, n.º 13 (2016): 4170–80. http://dx.doi.org/10.1039/c6an00783j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Schmitz, Rachel D., Jan O. Karolin e Chris D. Geddes. "Plasmonic enhancement of intrinsic carbon nanodot emission". Chemical Physics Letters 622 (fevereiro de 2015): 124–27. http://dx.doi.org/10.1016/j.cplett.2015.01.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Mishra, Manish Kr, Amrita Chakravarty, Koushik Bhowmik e Goutam De. "Carbon nanodot–ORMOSIL fluorescent paint and films". Journal of Materials Chemistry C 3, n.º 4 (2015): 714–19. http://dx.doi.org/10.1039/c4tc02140a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Marinovic, Adam, Lim S. Kiat, Steve Dunn, Maria-Magdalena Titirici e Joe Briscoe. "Carbon-Nanodot Solar Cells from Renewable Precursors". ChemSusChem 10, n.º 5 (14 de fevereiro de 2017): 1004–13. http://dx.doi.org/10.1002/cssc.201601741.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Wang, Zhong-Xia, Chun-Lan Zheng, Qi-Le Li e Shou-Nian Ding. "Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions". Analyst 139, n.º 7 (2014): 1751–55. http://dx.doi.org/10.1039/c3an02097e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

De los Reyes-Berbel, Eduardo, Inmaculada Ortiz-Gomez, Mariano Ortega-Muñoz, Alfonso Salinas-Castillo, Luis Fermin Capitan-Vallvey, Fernando Hernandez-Mateo, Francisco Javier Lopez-Jaramillo e Francisco Santoyo-Gonzalez. "Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular “off–on” (bio)sensors". Nanoscale 12, n.º 16 (2020): 9178–85. http://dx.doi.org/10.1039/d0nr01004a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Zhang, Cen, Feifei Zhu, Haiyang Xu, Weizhen Liu, Liu Yang, Zhongqiang Wang, Jiangang Ma, Zhenhui Kang e Yichun Liu. "Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons". Nanoscale 9, n.º 38 (2017): 14592–601. http://dx.doi.org/10.1039/c7nr04392a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Yadav, Ram Manohar, Zhengyuan Li, Tianyu Zhang, Onur Sahin, Soumyabrata Roy, Guanhui Gao, Huazhang Guo et al. "Amine‐Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane". Advanced Materials 34, n.º 2 (22 de outubro de 2021): 2105690. http://dx.doi.org/10.1002/adma.202105690.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Long, Bei, Jingnan Zhang, Lei Luo, Gangfeng Ouyang, Muhammad-Sadeeq Balogun, Shuqin Song e Yexiang Tong. "High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2nanodots as an anode of an all-flexible sodium-ion battery". Journal of Materials Chemistry A 7, n.º 6 (2019): 2626–35. http://dx.doi.org/10.1039/c8ta09678c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zhang, Wuyuan, Anna Bariotaki, Ioulia Smonou e Frank Hollmann. "Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride". Green Chemistry 19, n.º 9 (2017): 2096–100. http://dx.doi.org/10.1039/c7gc00539c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Duarah, Rituparna, e Niranjan Karak. "High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes". New Journal of Chemistry 42, n.º 3 (2018): 2167–79. http://dx.doi.org/10.1039/c7nj03889e.

Texto completo da fonte
Resumo:
Tough smart starch modified hyperbranched polyurethane/reduced graphene oxide–silver–reduced carbon nanodot nanocomposites with self-healing and self-cleaning attributes under a sustainable energy source.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Essner, Jeremy B., Richard N. McCay, Chip J. Smith II, Stephen M. Cobb, Charles H. Laber e Gary A. Baker. "A switchable peroxidase mimic derived from the reversible co-assembly of cytochrome c and carbon dots". Journal of Materials Chemistry B 4, n.º 12 (2016): 2163–70. http://dx.doi.org/10.1039/c6tb00052e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Zhang, Wenfei, Yiqun Ni, Xuhui Xu, Wei Lu, Pengpeng Ren, Peiguang Yan, Chun Kit Siu, Shuangchen Ruan e Siu Fung Yu. "Realization of multiphoton lasing from carbon nanodot microcavities". Nanoscale 9, n.º 18 (2017): 5957–63. http://dx.doi.org/10.1039/c7nr01101f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Zhao, Xinhui, Xu Zhang, Zhimin Xue, Wenjun Chen, Zhen Zhou e Tiancheng Mu. "Fe nanodot-decorated MoS2 nanosheets on carbon cloth: an efficient and flexible electrode for ambient ammonia synthesis". Journal of Materials Chemistry A 7, n.º 48 (2019): 27417–22. http://dx.doi.org/10.1039/c9ta09264a.

Texto completo da fonte
Resumo:
Fe nanodot-decorated MoS2 nanosheets on carbon cloth (Fe–MoS2/CC) was rationally designed as an efficient and flexible electrode for the electrochemical nitrogen reduction reaction at ambient temperature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Huda, Miftakhul, Zulfakri bin Mohamad, Takuya Komori, You Yin e Sumio Hosaka. "Fabrication of CoPt Nanodot Array with a Pitch of 33 nm Using Pattern-Transfer Technique of PS-PDMS Self-Assembly". Key Engineering Materials 596 (dezembro de 2013): 83–87. http://dx.doi.org/10.4028/www.scientific.net/kem.596.83.

Texto completo da fonte
Resumo:
The progress of information technology has increased the demand of the capacity of storage media. Bit patterned media (BPM) has been known as a promising method to achieve the magnetic-data-storage capability of more than 1 Tb/in.2. In this work, we demonstrated fabrication of magnetic nanodot array of CoPt with a pitch of 33 nm using a pattern-transfer method of block copolymer (BCP) self-assembly. Carbon hard mask (CHM) was adopted as a mask to pattern-transfer self-assembled nanodot array formed from poly (styrene)-b-poly (dimethyl siloxane) (PS-PDMS) with a molecular weight of 30,000-7,500 mol/g. According to our experiment results, CHM showed its high selectivity against CoPt in Ar ion milling. Therefore, this result boosted the potential of BCP self-assembly technique to fabricate magnetic nanodot array for the next generation of hard disk drive (HDD) due to the ease of large-area fabrication, and low cost.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wu, Yuanyuan, Peng Wei, Sumate Pengpumkiat, Emily A. Schumacher e Vincent T. Remcho. "A novel ratiometric fluorescent immunoassay for human α-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC". Analytical Methods 8, n.º 27 (2016): 5398–406. http://dx.doi.org/10.1039/c6ay01171c.

Texto completo da fonte
Resumo:
Non-toxic, fluorescent carbon nanodot labels are employed as novel ratiometric immunosensors for α-fetoprotein (AFP), a liver cancer biomarker. The assay generates a broad linear range, a low detection limit, and can be adapted to a variety of immunoassay targets.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sciortino, Alice, Francesco Ferrante, Gil Gonçalves, Gerard Tobias, Radian Popescu, Dagmar Gerthsen, Nicolò Mauro et al. "Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids". ACS Applied Materials & Interfaces 13, n.º 41 (5 de outubro de 2021): 49232–41. http://dx.doi.org/10.1021/acsami.1c16929.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Yu, Pyng, Xiaoming Wen, Yon-Rui Toh, Yu-Chieh Lee, Kuo-Yen Huang, Shujuan Huang, Santosh Shrestha, Gavin Conibeer e Jau Tang. "Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites". Journal of Materials Chemistry C 2, n.º 16 (2014): 2894. http://dx.doi.org/10.1039/c3tc32395a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Li, C., P. X. Yan, X. C. Li e E. M. Chong. "Electron field emission from diamond-like carbon nanodot arrays". Physica E: Low-dimensional Systems and Nanostructures 42, n.º 5 (março de 2010): 1343–46. http://dx.doi.org/10.1016/j.physe.2009.11.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ferrer-Ruiz, Andrés, Tobias Scharl, Philipp Haines, Laura Rodríguez-Pérez, Alejandro Cadranel, M. Ángeles Herranz, Dirk M. Guldi e Nazario Martín. "Exploring Tetrathiafulvalene-Carbon Nanodot Conjugates in Charge Transfer Reactions". Angewandte Chemie International Edition 57, n.º 4 (29 de dezembro de 2017): 1001–5. http://dx.doi.org/10.1002/anie.201709561.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ferrer-Ruiz, Andrés, Tobias Scharl, Philipp Haines, Laura Rodríguez-Pérez, Alejandro Cadranel, M. Ángeles Herranz, Dirk M. Guldi e Nazario Martín. "Exploring Tetrathiafulvalene-Carbon Nanodot Conjugates in Charge Transfer Reactions". Angewandte Chemie 130, n.º 4 (29 de dezembro de 2017): 1013–17. http://dx.doi.org/10.1002/ange.201709561.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Goh, Eunseo, e Hye Jin Lee. "Biofunctionalized Carbon Nanodot‐Polystyrene Bead Conjugates for Bioanalysis Applications". Bulletin of the Korean Chemical Society 41, n.º 8 (agosto de 2020): 776–77. http://dx.doi.org/10.1002/bkcs.12069.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Gan, Zhixing, Lizhe Liu, Li Wang, Guangsheng Luo, Chunlan Mo e Chenliang Chang. "Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels". Physical Chemistry Chemical Physics 20, n.º 26 (2018): 18089–96. http://dx.doi.org/10.1039/c8cp02069h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Righetto, Marcello, Francesco Carraro, Alberto Privitera, Giulia Marafon, Alessandro Moretto e Camilla Ferrante. "The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective". Journal of Physical Chemistry C 124, n.º 40 (14 de setembro de 2020): 22314–20. http://dx.doi.org/10.1021/acs.jpcc.0c06996.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Kim, Daeun, Yuri Choi, Eeseul Shin, Yun Kyung Jung e Byeong-Su Kim. "Sweet nanodot for biomedical imaging: carbon dot derived from xylitol". RSC Advances 4, n.º 44 (2014): 23210. http://dx.doi.org/10.1039/c4ra01723d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Xu, Bailu, Chuanqi Zhao, Weili Wei, Jinsong Ren, Daisuke Miyoshi, Naoki Sugimoto e Xiaogang Qu. "Aptamer carbon nanodot sandwich used for fluorescent detection of protein". Analyst 137, n.º 23 (2012): 5483. http://dx.doi.org/10.1039/c2an36174d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Borenstein, Arie, Volker Strauss, Matthew D. Kowal, Mackenzie Anderson e Richard B. Kaner. "Laser‐Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation". Small 15, n.º 52 (dezembro de 2019): 1904918. http://dx.doi.org/10.1002/smll.201904918.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bettini, Simona, Shadi Sawalha, Luigi Carbone, Gabriele Giancane, Maurizio Prato e Ludovico Valli. "Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation". Nanoscale 11, n.º 15 (2019): 7414–23. http://dx.doi.org/10.1039/c9nr00951e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gao, Guoping, Yan Jiao, Fengxian Ma, Yalong Jiao, Eric Waclawik e Aijun Du. "Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies". Physical Chemistry Chemical Physics 17, n.º 46 (2015): 31140–44. http://dx.doi.org/10.1039/c5cp05512a.

Texto completo da fonte
Resumo:
Density functional theory calculations reveal that hybrid carbon nanodots and graphitic carbon nitride can form a type-II van der Waals heterojunction, leading to significant reduction of band gap and enhanced visible light response.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Sun, Jianyu, Longli Bo, Li Yang, Xinxin Liang e Xuejiao Hu. "A carbon nanodot modified Cu–Mn–Ce/ZSM catalyst for the enhanced microwave-assisted degradation of gaseous toluene". RSC Adv. 4, n.º 28 (2014): 14385–91. http://dx.doi.org/10.1039/c3ra47814a.

Texto completo da fonte
Resumo:
Toluene waste gas was treated with a carbon nanodot (CND) modified Cu–Mn–Ce/ZSM catalyst (CND–CMCZ) and a Cu–Mn–Ce/ZSM catalyst (CMCZ) respectively by a fixed bed under microwave irradiation. 75% of the gaseous toluene was degraded by the CND–CMCZ catalyst within 80 min at 150 °C, which was almost 1.9 times that of the CMCZ catalyst.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Chen, Jing, Baofeng Liu, Zhongzhou Yang, Jiao Qu, Hongwei Xun, Runzhi Dou, Xiang Gao e Li Wang. "Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure inArabidopsis thaliana(L.)". Environmental Science: Nano 5, n.º 11 (2018): 2672–85. http://dx.doi.org/10.1039/c8en00674a.

Texto completo da fonte
Resumo:
In this study, we systematically investigated the fate and phytotoxicity of carbon nanodots (C-dots, about 3 nm) inArabidopsis thaliana(Arabidopsis), as well as the underlying potential mechanisms, by integrating transcriptomic, physiological and metabolomic techniques.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Wu, Meng-Yuan, Qing Lou, Guang-Song Zheng, Cheng-Long Shen, Jin-Hao Zang, Kai-Kai Liu, Lin Dong e Chong-Xin Shan. "Towards efficient carbon nanodot-based electromagnetic microwave absorption via nitrogen doping". Applied Surface Science 567 (novembro de 2021): 150897. http://dx.doi.org/10.1016/j.apsusc.2021.150897.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bankoti, Kamakshi, Arun Prabhu Rameshbabu, Sayanti Datta, Madhurima Roy, Piyali Goswami, Sabyasachi Roy, Amit Kumar Das, Sudip Kumar Ghosh e Santanu Dhara. "Carbon nanodot decorated acellular dermal matrix hydrogel augments chronic wound closure". Journal of Materials Chemistry B 8, n.º 40 (2020): 9277–94. http://dx.doi.org/10.1039/d0tb01574a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Maiti, Rishi, Subhrajit Mukherjee, Tamal Dey e Samit K. Ray. "Solution Processed Highly Responsive UV Photodetectors from Carbon Nanodot/Silicon Heterojunctions". ACS Applied Nano Materials 2, n.º 6 (22 de maio de 2019): 3971–76. http://dx.doi.org/10.1021/acsanm.9b00860.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Santra, Saswati, Nirmalya Sankar Das, Subrata Senapati, Dipayan Sen, Kalyan Kumar Chattopadhyay e Karuna Kar Nanda. "Negative-charge-functionalized carbon nanodot: a low-cost smart cold emitter". Nanotechnology 28, n.º 39 (6 de setembro de 2017): 395705. http://dx.doi.org/10.1088/1361-6528/aa7ee6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia