Artigos de revistas sobre o tema "Carbon nanodot"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Carbon nanodot".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Liu, Jing, Miftakhul Huda, Zulfakri bin Mohamad, Hui Zhang, You Yin e Sumio Hosaka. "Fabrication of Carbon Nanodot Arrays with a Pitch of 20 nm for Pattern-Transfer of PDMS Self-Assembled Nanodots". Key Engineering Materials 596 (dezembro de 2013): 88–91. http://dx.doi.org/10.4028/www.scientific.net/kem.596.88.
Texto completo da fonteYue, Yuxue, Bolin Wang, Saisai Wang, Chunxiao Jin, Jinyue Lu, Zheng Fang, Shujuan Shao et al. "Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination". Chemical Communications 56, n.º 38 (2020): 5174–77. http://dx.doi.org/10.1039/c9cc09701e.
Texto completo da fonteJung, Hyun Kyung, e Hyung Woo Lee. "Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes". Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/270989.
Texto completo da fontePai, Yi-Hao, e Gong-Ru Lin. "Electrochemical Reduction of Uniformly Dispersed Pt and Ag Nanodots on Carbon Fiber Electrodes". Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/384601.
Texto completo da fonteBiswas, Abhijit, Subir Paul e Arindam Banerjee. "Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties". Journal of Materials Chemistry A 3, n.º 29 (2015): 15074–81. http://dx.doi.org/10.1039/c5ta03355a.
Texto completo da fonteAkahane, Takashi, Takuya Komori, Jing Liu, Miftakhul Huda, Zulfakri bin Mohamad, You Yin e Sumio Hosaka. "Improved Observation Contrast of Block-Copolymer Nanodot Pattern Using Carbon Hard Mask (CHM)". Key Engineering Materials 534 (janeiro de 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/kem.534.126.
Texto completo da fonteLiu, Xue, Xiuping Tang, Yu Hou, Qiuhua Wu e Guolin Zhang. "Fluorescent nanothermometers based on mixed shell carbon nanodots". RSC Advances 5, n.º 99 (2015): 81713–22. http://dx.doi.org/10.1039/c5ra12541c.
Texto completo da fonteIhwan, Muh Al, e Zuhdan Kun Prasetyo. "Utilization of Corn Oil as a Photocatalyst of Carbon Nanodots for Wastewater Cleaning". Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, n.º 2 (8 de outubro de 2022): 171–78. http://dx.doi.org/10.26740/jpfa.v11n2.p171-178.
Texto completo da fonteSun, Ming-Ye, You-Jin Zheng, Lei Zhang, Li-Ping Zhao e Bing Zhang. "Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO 2 nanocomposites under visible light". Chinese Physics B 26, n.º 5 (maio de 2017): 058101. http://dx.doi.org/10.1088/1674-1056/26/5/058101.
Texto completo da fonteKnoblauch, Rachael, Amanda Harvey, Estelle Ra, Ken M. Greenberg, Judy Lau, Elizabeth Hawkins e Chris D. Geddes. "Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots". Nanoscale 13, n.º 1 (2021): 85–99. http://dx.doi.org/10.1039/d0nr06842j.
Texto completo da fonteBorenstein, Arie, Volker Strauss, Matthew D. Kowal, Mackenzie Anderson e Richard B. Kaner. "Carbon Nanodots: Laser‐Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation (Small 52/2019)". Small 15, n.º 52 (dezembro de 2019): 1970285. http://dx.doi.org/10.1002/smll.201970285.
Texto completo da fonteDunphy, Andrew, Kamal Patel, Sarah Belperain, Aubrey Pennington, Norman Chiu, Ziyu Yin, Xuewei Zhu et al. "Modulation of Macrophage Polarization by Carbon Nanodots and Elucidation of Carbon Nanodot Uptake Routes in Macrophages". Nanomaterials 11, n.º 5 (26 de abril de 2021): 1116. http://dx.doi.org/10.3390/nano11051116.
Texto completo da fonteHasenöhrl, Dominik H., Avishek Saha, Volker Strauss, Leonie Wibmer, Stefanie Klein, Dirk M. Guldi e Andreas Hirsch. "Bulbous gold–carbon nanodot hybrid nanoclusters for cancer therapy". Journal of Materials Chemistry B 5, n.º 43 (2017): 8591–99. http://dx.doi.org/10.1039/c7tb02039b.
Texto completo da fonteLiu, Guangxing, Hua Chai, Yuguo Tang e Peng Miao. "Bright carbon nanodots for miRNA diagnostics coupled with concatenated hybridization chain reaction". Chemical Communications 56, n.º 8 (2020): 1175–78. http://dx.doi.org/10.1039/c9cc08753b.
Texto completo da fonteGomez, I. Jennifer, Blanca Arnaiz, Michele Cacioppo, Francesca Arcudi e Maurizio Prato. "Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel". Journal of Materials Chemistry B 6, n.º 35 (2018): 5540–48. http://dx.doi.org/10.1039/c8tb01796d.
Texto completo da fonteBuiculescu, Raluca, Dimitrios Stefanakis, Maria Androulidaki, Demetrios Ghanotakis e Nikos A. Chaniotakis. "Controlling carbon nanodot fluorescence for optical biosensing". Analyst 141, n.º 13 (2016): 4170–80. http://dx.doi.org/10.1039/c6an00783j.
Texto completo da fonteSchmitz, Rachel D., Jan O. Karolin e Chris D. Geddes. "Plasmonic enhancement of intrinsic carbon nanodot emission". Chemical Physics Letters 622 (fevereiro de 2015): 124–27. http://dx.doi.org/10.1016/j.cplett.2015.01.035.
Texto completo da fonteMishra, Manish Kr, Amrita Chakravarty, Koushik Bhowmik e Goutam De. "Carbon nanodot–ORMOSIL fluorescent paint and films". Journal of Materials Chemistry C 3, n.º 4 (2015): 714–19. http://dx.doi.org/10.1039/c4tc02140a.
Texto completo da fonteMarinovic, Adam, Lim S. Kiat, Steve Dunn, Maria-Magdalena Titirici e Joe Briscoe. "Carbon-Nanodot Solar Cells from Renewable Precursors". ChemSusChem 10, n.º 5 (14 de fevereiro de 2017): 1004–13. http://dx.doi.org/10.1002/cssc.201601741.
Texto completo da fonteWang, Zhong-Xia, Chun-Lan Zheng, Qi-Le Li e Shou-Nian Ding. "Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions". Analyst 139, n.º 7 (2014): 1751–55. http://dx.doi.org/10.1039/c3an02097e.
Texto completo da fonteDe los Reyes-Berbel, Eduardo, Inmaculada Ortiz-Gomez, Mariano Ortega-Muñoz, Alfonso Salinas-Castillo, Luis Fermin Capitan-Vallvey, Fernando Hernandez-Mateo, Francisco Javier Lopez-Jaramillo e Francisco Santoyo-Gonzalez. "Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular “off–on” (bio)sensors". Nanoscale 12, n.º 16 (2020): 9178–85. http://dx.doi.org/10.1039/d0nr01004a.
Texto completo da fonteZhang, Cen, Feifei Zhu, Haiyang Xu, Weizhen Liu, Liu Yang, Zhongqiang Wang, Jiangang Ma, Zhenhui Kang e Yichun Liu. "Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons". Nanoscale 9, n.º 38 (2017): 14592–601. http://dx.doi.org/10.1039/c7nr04392a.
Texto completo da fonteYadav, Ram Manohar, Zhengyuan Li, Tianyu Zhang, Onur Sahin, Soumyabrata Roy, Guanhui Gao, Huazhang Guo et al. "Amine‐Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane". Advanced Materials 34, n.º 2 (22 de outubro de 2021): 2105690. http://dx.doi.org/10.1002/adma.202105690.
Texto completo da fonteLong, Bei, Jingnan Zhang, Lei Luo, Gangfeng Ouyang, Muhammad-Sadeeq Balogun, Shuqin Song e Yexiang Tong. "High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2nanodots as an anode of an all-flexible sodium-ion battery". Journal of Materials Chemistry A 7, n.º 6 (2019): 2626–35. http://dx.doi.org/10.1039/c8ta09678c.
Texto completo da fonteZhang, Wuyuan, Anna Bariotaki, Ioulia Smonou e Frank Hollmann. "Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride". Green Chemistry 19, n.º 9 (2017): 2096–100. http://dx.doi.org/10.1039/c7gc00539c.
Texto completo da fonteDuarah, Rituparna, e Niranjan Karak. "High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes". New Journal of Chemistry 42, n.º 3 (2018): 2167–79. http://dx.doi.org/10.1039/c7nj03889e.
Texto completo da fonteEssner, Jeremy B., Richard N. McCay, Chip J. Smith II, Stephen M. Cobb, Charles H. Laber e Gary A. Baker. "A switchable peroxidase mimic derived from the reversible co-assembly of cytochrome c and carbon dots". Journal of Materials Chemistry B 4, n.º 12 (2016): 2163–70. http://dx.doi.org/10.1039/c6tb00052e.
Texto completo da fonteZhang, Wenfei, Yiqun Ni, Xuhui Xu, Wei Lu, Pengpeng Ren, Peiguang Yan, Chun Kit Siu, Shuangchen Ruan e Siu Fung Yu. "Realization of multiphoton lasing from carbon nanodot microcavities". Nanoscale 9, n.º 18 (2017): 5957–63. http://dx.doi.org/10.1039/c7nr01101f.
Texto completo da fonteZhao, Xinhui, Xu Zhang, Zhimin Xue, Wenjun Chen, Zhen Zhou e Tiancheng Mu. "Fe nanodot-decorated MoS2 nanosheets on carbon cloth: an efficient and flexible electrode for ambient ammonia synthesis". Journal of Materials Chemistry A 7, n.º 48 (2019): 27417–22. http://dx.doi.org/10.1039/c9ta09264a.
Texto completo da fonteHuda, Miftakhul, Zulfakri bin Mohamad, Takuya Komori, You Yin e Sumio Hosaka. "Fabrication of CoPt Nanodot Array with a Pitch of 33 nm Using Pattern-Transfer Technique of PS-PDMS Self-Assembly". Key Engineering Materials 596 (dezembro de 2013): 83–87. http://dx.doi.org/10.4028/www.scientific.net/kem.596.83.
Texto completo da fonteWu, Yuanyuan, Peng Wei, Sumate Pengpumkiat, Emily A. Schumacher e Vincent T. Remcho. "A novel ratiometric fluorescent immunoassay for human α-fetoprotein based on carbon nanodot-doped silica nanoparticles and FITC". Analytical Methods 8, n.º 27 (2016): 5398–406. http://dx.doi.org/10.1039/c6ay01171c.
Texto completo da fonteSciortino, Alice, Francesco Ferrante, Gil Gonçalves, Gerard Tobias, Radian Popescu, Dagmar Gerthsen, Nicolò Mauro et al. "Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids". ACS Applied Materials & Interfaces 13, n.º 41 (5 de outubro de 2021): 49232–41. http://dx.doi.org/10.1021/acsami.1c16929.
Texto completo da fonteYu, Pyng, Xiaoming Wen, Yon-Rui Toh, Yu-Chieh Lee, Kuo-Yen Huang, Shujuan Huang, Santosh Shrestha, Gavin Conibeer e Jau Tang. "Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites". Journal of Materials Chemistry C 2, n.º 16 (2014): 2894. http://dx.doi.org/10.1039/c3tc32395a.
Texto completo da fonteLi, C., P. X. Yan, X. C. Li e E. M. Chong. "Electron field emission from diamond-like carbon nanodot arrays". Physica E: Low-dimensional Systems and Nanostructures 42, n.º 5 (março de 2010): 1343–46. http://dx.doi.org/10.1016/j.physe.2009.11.018.
Texto completo da fonteFerrer-Ruiz, Andrés, Tobias Scharl, Philipp Haines, Laura Rodríguez-Pérez, Alejandro Cadranel, M. Ángeles Herranz, Dirk M. Guldi e Nazario Martín. "Exploring Tetrathiafulvalene-Carbon Nanodot Conjugates in Charge Transfer Reactions". Angewandte Chemie International Edition 57, n.º 4 (29 de dezembro de 2017): 1001–5. http://dx.doi.org/10.1002/anie.201709561.
Texto completo da fonteFerrer-Ruiz, Andrés, Tobias Scharl, Philipp Haines, Laura Rodríguez-Pérez, Alejandro Cadranel, M. Ángeles Herranz, Dirk M. Guldi e Nazario Martín. "Exploring Tetrathiafulvalene-Carbon Nanodot Conjugates in Charge Transfer Reactions". Angewandte Chemie 130, n.º 4 (29 de dezembro de 2017): 1013–17. http://dx.doi.org/10.1002/ange.201709561.
Texto completo da fonteGoh, Eunseo, e Hye Jin Lee. "Biofunctionalized Carbon Nanodot‐Polystyrene Bead Conjugates for Bioanalysis Applications". Bulletin of the Korean Chemical Society 41, n.º 8 (agosto de 2020): 776–77. http://dx.doi.org/10.1002/bkcs.12069.
Texto completo da fonteGan, Zhixing, Lizhe Liu, Li Wang, Guangsheng Luo, Chunlan Mo e Chenliang Chang. "Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels". Physical Chemistry Chemical Physics 20, n.º 26 (2018): 18089–96. http://dx.doi.org/10.1039/c8cp02069h.
Texto completo da fonteRighetto, Marcello, Francesco Carraro, Alberto Privitera, Giulia Marafon, Alessandro Moretto e Camilla Ferrante. "The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective". Journal of Physical Chemistry C 124, n.º 40 (14 de setembro de 2020): 22314–20. http://dx.doi.org/10.1021/acs.jpcc.0c06996.
Texto completo da fonteKim, Daeun, Yuri Choi, Eeseul Shin, Yun Kyung Jung e Byeong-Su Kim. "Sweet nanodot for biomedical imaging: carbon dot derived from xylitol". RSC Advances 4, n.º 44 (2014): 23210. http://dx.doi.org/10.1039/c4ra01723d.
Texto completo da fonteXu, Bailu, Chuanqi Zhao, Weili Wei, Jinsong Ren, Daisuke Miyoshi, Naoki Sugimoto e Xiaogang Qu. "Aptamer carbon nanodot sandwich used for fluorescent detection of protein". Analyst 137, n.º 23 (2012): 5483. http://dx.doi.org/10.1039/c2an36174d.
Texto completo da fonteBorenstein, Arie, Volker Strauss, Matthew D. Kowal, Mackenzie Anderson e Richard B. Kaner. "Laser‐Assisted Lattice Recovery of Graphene by Carbon Nanodot Incorporation". Small 15, n.º 52 (dezembro de 2019): 1904918. http://dx.doi.org/10.1002/smll.201904918.
Texto completo da fonteBettini, Simona, Shadi Sawalha, Luigi Carbone, Gabriele Giancane, Maurizio Prato e Ludovico Valli. "Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation". Nanoscale 11, n.º 15 (2019): 7414–23. http://dx.doi.org/10.1039/c9nr00951e.
Texto completo da fonteGao, Guoping, Yan Jiao, Fengxian Ma, Yalong Jiao, Eric Waclawik e Aijun Du. "Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies". Physical Chemistry Chemical Physics 17, n.º 46 (2015): 31140–44. http://dx.doi.org/10.1039/c5cp05512a.
Texto completo da fonteSun, Jianyu, Longli Bo, Li Yang, Xinxin Liang e Xuejiao Hu. "A carbon nanodot modified Cu–Mn–Ce/ZSM catalyst for the enhanced microwave-assisted degradation of gaseous toluene". RSC Adv. 4, n.º 28 (2014): 14385–91. http://dx.doi.org/10.1039/c3ra47814a.
Texto completo da fonteChen, Jing, Baofeng Liu, Zhongzhou Yang, Jiao Qu, Hongwei Xun, Runzhi Dou, Xiang Gao e Li Wang. "Phenotypic, transcriptional, physiological and metabolic responses to carbon nanodot exposure inArabidopsis thaliana(L.)". Environmental Science: Nano 5, n.º 11 (2018): 2672–85. http://dx.doi.org/10.1039/c8en00674a.
Texto completo da fonteWu, Meng-Yuan, Qing Lou, Guang-Song Zheng, Cheng-Long Shen, Jin-Hao Zang, Kai-Kai Liu, Lin Dong e Chong-Xin Shan. "Towards efficient carbon nanodot-based electromagnetic microwave absorption via nitrogen doping". Applied Surface Science 567 (novembro de 2021): 150897. http://dx.doi.org/10.1016/j.apsusc.2021.150897.
Texto completo da fonteBankoti, Kamakshi, Arun Prabhu Rameshbabu, Sayanti Datta, Madhurima Roy, Piyali Goswami, Sabyasachi Roy, Amit Kumar Das, Sudip Kumar Ghosh e Santanu Dhara. "Carbon nanodot decorated acellular dermal matrix hydrogel augments chronic wound closure". Journal of Materials Chemistry B 8, n.º 40 (2020): 9277–94. http://dx.doi.org/10.1039/d0tb01574a.
Texto completo da fonteMaiti, Rishi, Subhrajit Mukherjee, Tamal Dey e Samit K. Ray. "Solution Processed Highly Responsive UV Photodetectors from Carbon Nanodot/Silicon Heterojunctions". ACS Applied Nano Materials 2, n.º 6 (22 de maio de 2019): 3971–76. http://dx.doi.org/10.1021/acsanm.9b00860.
Texto completo da fonteSantra, Saswati, Nirmalya Sankar Das, Subrata Senapati, Dipayan Sen, Kalyan Kumar Chattopadhyay e Karuna Kar Nanda. "Negative-charge-functionalized carbon nanodot: a low-cost smart cold emitter". Nanotechnology 28, n.º 39 (6 de setembro de 2017): 395705. http://dx.doi.org/10.1088/1361-6528/aa7ee6.
Texto completo da fonte